®

Check for
updates

Extending Maximal Perfect Haplotype
Blocks to the Realm of Pangenomics

(=)

Lucia Williams and Brendan Mumey

Montana State University, Bozeman, MT 59718, USA
lucia.williams@montana.edu

Abstract. Recent work provides the first method to measure the rela-
tive fitness of genomic variants within a population that scales to large
numbers of genomes. A key component of the computation involves find-
ing conserved haplotype blocks, which can be done in linear time. Here,
we extend the notion of conserved haplotype blocks to pangenomes,
which can store more complex variation than a single reference genome.
We define a mazximal perfect pangenome haplotype block and give a linear-
time, suffix tree based approach to find all such blocks from a set of
pangenome haplotypes. We demonstrate the method by applying it to a
pangenome built from yeast strains.

Keywords: Population genomics + Haplotype block - Pangenomics

1 Introduction

Given the availability of sequenced genome data for many individuals of the
same species, it is now possible to study population genetics and evolution at
a level of detail not before possible. An established method for quantifying the
relative fitness of two genetic variants uses the selection coefficient [6, Chapter
5.3]. Recent work by Cunha et al. [4] describes a method to scale the computa-
tion of selection coefficients across an entire genome, even when the number of
individuals being analyzed is large. They adopt the maximum-likelihood based
method from Chen et al. [3] for computing the selection coefficient for a maxi-
mally conserved portion of the genome. These conserved portions of the genome
can be identified using haplotypes: sequences of single nucleotide polymorphism
(SNP) sites defined with respect to a reference sequence for the population. How-
ever, Cunha et al. note that, prior to their work, no efficient method existed to
compute all maximally conserved blocks from a set of haplotypes. They give an
algorithm for locating the blocks that is quadratic in the length of the haplo-
types. More recently, Alanko et al. [1] give a method for finding haplotype blocks
in linear time. However, both haplotype block location algorithms assume that
all genomes under consideration have been aligned to the same reference genome.

© Springer Nature Switzerland AG 2020
C. Martin-Vide et al. (Eds.): AlICoB 2020, LNBI 12099, pp. 41-48, 2020.
https://doi.org/10.1007/978-3-030-42266-0_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-42266-0_4&domain=pdf
http://orcid.org/0000-0003-3785-0247
http://orcid.org/0000-0001-7151-2124
https://doi.org/10.1007/978-3-030-42266-0_4

42 L. Williams and B. Mumey

A pangenome allows us to consider more complex variation in multiple indi-
viduals or organisms from a related group or species [10]. Pangenomic sequence
data are often studied using graphs, where each sequence in a data set is repre-
sented by a path in the graph. In this work, we reformulate the problem of finding
maximal haplotype blocks in the context of pangenomics. We give a method for
finding pangenome SNPs in a De Bruijn graph in Sect. 3, define the pangenome
maximal perfect haplotype block problem in Section 4, and describe a suffix
tree approach to find all blocks in linear time relative to the input in Sect. 5.
Finally, we find maximal perfect pangenome haplotype blocks in a ten-strain
yeast pangenome and report results in Sect. 6.

2 Background

Given a set of binary sequences representing the presence (or absence) of SNPs
in a chromosome, the authors of [4] define a maxzimal perfect haplotype block as
follows:

Definition 1. Given k sequences S = (s1,82,...,5k) of length n, a maximal
perfect haplotype block is a triple (K, i, j) with K C {1,2,...,k}, |K| > 2, and
1 <1 <5 < n such that

)

1. s[i, 5] = t[i, j] for all s,t € S|k (equality),

2. i=1 ors[i—1] #tli — 1] for some s,t € S|k (left-mazimality),

3. j=mnors[j+1] #t[j+1] for some s,t € S|k (right-mazimality),

4. PK’ C {1,2,...,k} with K' C K such that s[i,j] = t[i,j] for all s,t € S|k
(row-maximality).

~

Then, the mazimal perfect haplotype block (MPHB) problem is to find all max-
imal perfect haplotypes in a given set of sequences. For example, Fig. 1 shows a
set of three sequences containing five MPHBs.

In the case of pangenomic data it may not be possible to align each chromo-
some to a reference so we consider a generalized setting of the problem in which
the SNPs occur in an arbitrary directed graph, rather than a linear sequence.

Sequence 1: 101111
Sequence 2: 010010
Sequence 3: 100010

Fig.1. The five maximal perfect haplotype blocks in this set of sequences are
({1,341, 1,2), ({1,3},2,2), ({1,2,3},3,4), ({2, 3}, 3,6), and ({1,2,3},5,5).



Extending Maximal Perfect Haplotype Blocks to the Realm of Pangenomics 43

3 Building the SNP Graph

We assume that a compressed De Bruijn graph (¢cDBG) has been built for the
pangenomic data set we wish to study [2]. In this case the data set consists of a
set of pangenomic sequences and the cDBG graph G consists of a set of nodes
representing specific k-mers (or > k-mers if the graph has been compressed).
The parameter k& must be specified. An edge (u,v) is present in G provided the
last k—1 nucleotides of w match the first £—1 nucleotides of v. Each pangenomic
sequence is associated with a path in G, where each path node appends all non-
overlapping characters from the previous node in the path. Let P denote the
collection of sequence paths in G.

CGATTCTAAGT
CGATTGTAAGT

Fig.2. A bubble in a De Bruijn graph that represents a SNP; we arbitrarily consider
one side of the bubble to be the ‘0’ path and the other to be the ‘1’ path. In the
compressed De Bruijn graph, the ‘0’ and ‘1’ paths are each a single node.

We identify pangenomic SNPs by looking for “bubbles” in G. Bubbles, as
shown in Fig. 2, occur when paths diverge into exactly two subpaths and then
rejoin, and no additional edges enter or leave the interior of the bubble. We view
one side of the bubble as a ‘0’ and the other as a ‘1’. Some bubbles will be longer
than one nucleotide, but we still refer to them as SNPs for simplicity of notation.
All SNPs can be found in O(|G|) time, since bubble nodes in a ¢cDBG can be
recognized in O(1) time. We form the SNP graph by retaining only those vertices
of the cDBG graph that correspond to the ‘0’ and ‘1’ branches for each identified
SNP. The paths P in G induce new SNP paths by deleting the non-SNP nodes
in each path. The resulting SNP path sequences are used as input to maximal
perfect perfect pangenome haplotype block problem, defined in the next section.

4 Problem Definition

Given a SNP graph and a sequence, a pangenome haplotype is the list of nodes
that the sequence follows through the SNP graph. Due to large structural vari-
ations such as strain-specific genes, segmental deletions, insertions, and rear-
rangements, certain regions of the pangenome may be missed by some sequences
but followed by others. Thus, not all pangenome haplotypes have the exact same
set of SNPs, and the position of a node within the path does not indicate which
SNP the node corresponds to as it does in the single-reference case. Instead, the
node labels indicate both the SNP identifier and the call (either a ‘0’ or a ‘1°).
Figure 3 lists four example pangenome haplotypes.
We define a maximal perfect pangenome haplotype block.



44 L. Williams and B. Mumey

Definition 2. Given a set of k paths P = (p1,p2,--.,pk) through graph G =
(V, E), where each path is a sequence of nodes in V', a mazimal perfect pangenome
haplotype block is a set K C {1,2,...,k} and a path of m nodes s such that:

1. s is a subpath of p; for alli € K (equality),

2. There is no in-neighbor u of s[1] such that u, s is a subpath of p; for alli € K
(left maximality),

3. There is no out-neighbor v of sm| such that s,v is a subpath of p; for all
i € K (right mazimality),

4. There is no K' C{1,2,...,k} such that K' C K and s is a subpath of p; for
all i € K" (path set mazimality).

Just as in the standard MPHB problem, the mazimal perfect pangenome
haplotype block (MPPHB) problem is to find all maximal perfect pangenome
haplotype blocks among the k paths.

We note that if n is the length of the longest path in P, then there are no
more than (n + 1)k MPPHBs in any set of paths P. A proof is given in Sect. 5.

5 Linear Time Method Based on Suffix Trees

As in [1], we can use a suffix tree to solve the MPPHB problem in linear time.

Alanko et al. [1] note that all MPHBSs in a set of sequences S = {s1, sa,..., 8k}
correspond to maximal repeats (repeated substrings that cannot be extended; see
[7, Section 7.12]) in the string S = s1815282 ... s;$;. However, not all maximal
repeats in S are MPHBSs, since any s; may contain repeated substrings and a
pair s; and s; may contain the same substring beginning at different positions.
Neither of these is a MPHB.

They propose adding n + 1 unique “index characters” to each sequence,
alternating with the existing characters. This way, substrings can only match
to other substrings if they occur in exactly the same position in two different
sequences. This process creates the string ST so that there is a maximal repeat
in ST if and only if there is a MPHB in S. It is possible to find all maximal
repeats in a string using a suffix tree in linear time and space [7, Section 7.12].

In the pangenome case, the suffix tree approach can still be applied. Because
haplotype blocks need not begin at the same position in the path, the index
characters are not needed. If the SNP graph contains cycles, then there may be

SNP sequence 1: [1:0, 2:0, 3:1, 6:0, 5:0, 10:1]
SNP sequence 2: [2:0, 3:1, 5:0, 6:1, 7:0, 8:0, 9:0]
SNP sequence 3: [1:1, 2:1, 6:1, 7:0, 8:0, 9:1, 10:1]

Fig. 3. Three pangenome sequences represented as paths through a SNP graph contain-
ing ten SNPs. The subpath [2:0 3:1] and sequences {1, 2} represent one maximal
perfect pangenome haplotype block. Subpath [6:1, 7:0, 8:0] and sequences {2, 3}
is another.



Extending Maximal Perfect Haplotype Blocks to the Realm of Pangenomics 45

maximal repeats within a single path; we can mark and ignore all internal suffix
tree nodes that contain only a single haplotype path sequence in linear time
using a standard method [9]. Thus, a simple procedure for locating pangenome
haplotype blocks is as follows:

1. Build the string P = p1$1p29%s ... pp$r, where each $; is a distinct character
not used in the p; strings.

2. Build a suffix tree on P.

3. Use the suffix tree to find all maximal repeats (K,S) in P. The SNP path
and the set of sequences K are represented implicitly by the suffix tree node.

Building a suffix tree can be done in O(nk) time and space [5], and, as noted
above, finding all maximal repeats in the suffix tree is also linear time. Thus,
each step of the procedure takes linear time and space.

Since the MPPHBSs correspond to internal nodes in the suffix tree on P, we
can give a bound on the number of MPPHB in P.

Lemma 1. Given a set of k pangenome paths P with mazimum length n, there

are at most (n + 1)k MPPHBs in P.

Proof. As argued above, every MPPHB in P corresponds to a maximal repeat
in P. Because each path in P contains no more than n nodes, |P| < (n + 1)k.
Then, because the maximal repeats of a string are the internal nodes in the
suffix tree of that string [7, Theorem 7.12.1], there are at most (n+ 1)k maximal
repeats in P, and thus at most (n + 1)k MPPHBs in P.

6 Experimental Results

We tested our method for finding MPPHBs using a moderately-sized pangenomic
yeast data set. Yeast is a well-studied model system with a genome size of approx-
imately 12 Mb. We created a yeast data set using assemblies from 10 yeast strains
from the Saccharomyces Genome Database! used in either wine or bread-making.
To investigate the maximal perfect pangenome haplotype blocks present in the
data set, we construct a compressed De Bruijn graph for k& € {25,100, 1000} using
the cdbg package [2] and extract SNPs from each using the method described
in Sect.3. Each yeast sequence then corresponds to a path through the SNP
graph p;; that is, a sequence of pangenome SNP calls. Then, as in Sect.5, we
find maximal repeats in the string p1$1p28s ... px8x in order to find MPPHBs.
We use repeat-match from MUMmer 4.0 [8] to compute maximal repeats and
identify all maximal pangenomic haplotype blocks using these reported repeats.

Compressed De Bruijn graph and SNP graph generation takes a few minutes
on a moderate workstation? for this data set. In order to find maximal repeats

! http://www.yeastgenome.org The strains used were AWRI796 (Wine), BC187
(Wine), CLIB215 (Bakery), CLIB324 (Bakery), DBVPG6044 (Wine), L1528 (Wine),
LalvinQA23 (Wine), Red Star (Bakery), VL3 (Wine), YS9 (Bakery).

2 An 8-core 3.40 GHz Intel i7 CPU with 16 Gb of RAM.


http://www.yeastgenome.org

46 L. Williams and B. Mumey

using MUMmer, we encode SNP nodes using 19 alphabet characters. When
running repeat-match, we use the -f flag to find forward repeats only and the
-n flag to return only encoded repeats long enough to represent full SNP nodes
(in our case, 19 characters). For all k values, repeat-match took at most a few
seconds to run. We then use a simple Python script to decode the output back
to SNP labels and process it into haplotype blocks. For k = 25 and k = 100,
this takes a few minutes; for the other two values tested, it takes a few seconds
or less.

Table 1 shows the number of SNPs found in each experiment, as well the
number of haplotype blocks found and their average number of sequences and
SNP path length. When k£ = 1000 fewer SNPs are found since there are fewer
bubbles in the ¢cDB graph and the blocks are smaller in size. As the number of
bubbles in the ¢cDB graph increases, more blocks are found. We leave a more
thorough investigation of the relationship between k, the number of bubbles,
and the number of blocks to future work.

Table 1. Summary statistics for different k£ values. Decreasing k from 1000 to to 25
results in a larger SNP graph and more and bigger blocks found.

k # SNPs | # blocks | avg. |K| | avg. |S]|
1000 1,985 | 146 2.12 1.47
500 | 4,759 | 1,458 2.46 1.68
100 | 38,489 | 39,036 3.46 3.61
25 (117,792 | 79,154 3.41 4.24

We compare the distributions of these data for k£ = 500 and k¥ = 100 in Fig. 4.

1007 k=100
k=500

80

60 -

Number of SNPs

0 10 20 30 40 50 60 70 80
Number of paths

Fig. 4. Scatterplot showing each distribution of maximal perfect pangenome haplotype
sizes for kK = 100 and k = 500.



Extending Maximal Perfect Haplotype Blocks to the Realm of Pangenomics 47

SNP 24250

R SNP 18534 | [SNP34s19

) [ RS I ey
o 1 1| [sneioos2 SRR e SNP 6846
. I I [ [ S B bt “ I

SNP2I3; _f‘ 4195
sr'v 2_ NP 2419 a

s
SNP 25508 e - AEEEE
. 1 . 1 N

Fig. 5. Sample haplotype block paths from a pangenomic data set comprised of 10
yeast genomes. Each colored path represents a haplotype block and the line thickness
is proportional to the number of sequences in the block. SNPs 7778, 8174 and 25508
represent an introgressed region. (Color figure online)

In Fig. 5 we show a plot of several of the maximal haplotype blocks found in
the k = 100 graph. The graph shows an introgressed region of SNPs that occurs
in approximately half of the sequences that traverse the region shown.

7 Conclusion

In this work, we define the maximal perfect pangenome haplotype block problem
and give a linear time method to solve it. Single-reference haplotype blocks can
be used to compute a selection coefficient measuring the relative fitness of two
genetic variants in a population; a natural next step in the pangenome case is
to precisely define a pangenomic selection coefficient based on MPPHBs, or to
explore other applications of MPPHBs in population genetics.

We note that the positional Burrows-Wheeler Transform approach from [1]
cannot be directly adapted for pangenome haplotype blocks since the SNP graph
is not generally linear and paths may skip SNPs or contain cycles, etc. However,
we are interested in extending both the pangenome and single-reference maximal
perfect haplotype block problem to include inputs with SNPs that are not called,
in order to include genomes with low coverage in some regions.

Acknowledgements. Support provided by US National Science Foundation grants
DBI-1759522 and DBI-1661530. We thank the anonymous reviewers for their thoughtful
feedback and questions.

References

1. Alanko, J., Bannai, H., Cazaux, B., Peterlongo, P., Stoye, J.: Finding all maxi-
mal perfect haplotype blocks in linear time. In: 19th International Workshop on
Algorithms in Bioinformatics, WABI 2019. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2019)

2. Beller, T., Ohlebusch, E.: A representation of a compressed de Bruijn graph for
pan-genome analysis that enables search. Algorithms Mol. Biol. 11(1), 20 (2016)



48

10.

L. Williams and B. Mumey

Chen, H., Hey, J., Slatkin, M.: A hidden markov model for investigating recent
positive selection through haplotype structure. Theoret. Popul. Biol. 99, 18-30
(2015)

Cunha, L., Diekmann, Y., Kowada, L., Stoye, J.: Identifying maximal perfect hap-
lotype blocks. In: Alves, R. (ed.) BSB 2018. LNCS, vol. 11228, pp. 26-37. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-01722-4_3

Farach, M.: Optimal suffix tree construction with large alphabets. In: Proceedings
38th Annual Symposium on Foundations of Computer Science, pp. 137-143. IEEE
(1997)

Gillespie, J.H.: Population Genetics: a Concise Guide. JHU Press, Baltimore (2004)
Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

Marcais, G., Delcher, A.L., Phillippy, A.M., Coston, R., Salzberg, S.L., Zimin, A.:
MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol.
14(1), 1005944 (2018)

Sung, W.K.: Algorithms in Bioinformatics: A Practical Introduction. CRC Press,
Boca Raton (2009)

Tettelin, H., et al.: Genome analysis of multiple pathogenic isolates of streptococcus
agalactiae: implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci.
102(39), 13950-13955 (2005)


https://doi.org/10.1007/978-3-030-01722-4_3

	Preface
	Organization
	My Blue Whale: Seeking Order in a Chaotic World. An Autobiographical Reflection� (Abstract of Invited Talk)
	Contents
	Genomics
	Parallel Generalized Suffix Tree Construction for Genomic Data
	1 Introduction
	2 Preliminaries
	2.1 Haplotype Data
	2.2 Generalized Suffix Tree
	2.3 Utility Measure

	3 Methodology
	3.1 Architecture and Design Goals
	3.2 Parallel GST Construction

	4 Experimental Results and Analysis
	4.1 Evaluation Datasets and Implementation
	4.2 Performance Analysis
	4.3 Utility Measure

	5 Related Works
	6 Conclusion
	References

	A 3.5-Approximation Algorithm for Sorting by Intergenic Transpositions
	1 Introduction
	2 Basic Definitions
	3 Weighted Cycle Graph
	4 Preliminary Results
	5 The 3.5-Approximation Algorithm
	6 Conclusion
	References

	Heuristics for Reversal Distance Between Genomes with Duplicated Genes
	1 Introduction
	2 Basic Definitions
	3 Heuristic Approaches
	3.1 Random Maps (RM)
	3.2 Local Search (LS)
	3.3 Genetic Algorithm (GA)

	4 Experimental Results
	4.1 Database
	4.2 Model Tuning
	4.3 Results

	5 Conclusion
	References

	Extending Maximal Perfect Haplotype Blocks to the Realm of Pangenomics
	1 Introduction
	2 Background
	3 Building the SNP Graph
	4 Problem Definition
	5 Linear Time Method Based on Suffix Trees
	6 Experimental Results
	7 Conclusion
	References

	Gaps and Runs in Syntenic Alignments
	1 Introduction
	2 Methods
	3 Results
	3.1 The Sequence of Evolutionary Events
	3.2 The Distributions of Gene Pair Similarity

	4 One-at-a-Time Model
	4.1 The Combined Model

	5 Conclusions
	References

	Phylogenetics
	Comparing Integer Linear Programming to SAT-Solving for Hard Problems in Computational and Systems Biology
	1 Introduction
	2 Protein Folding via the HP Model
	3 Transforming Gene Order by Reversals
	4 The History Bound in Phylogenetic Networks
	5 Haplotyping by Pure Parsimony
	6 Conclusions
	References

	Combining Networks Using Cherry Picking Sequences
	1 Introduction
	2 Preliminaries
	3 Network Hybridization
	3.1 The Existence of a Tree-Child Solution

	4 An Algorithm for Tree-Child Network Hybridization
	4.1 Counting Cherries
	4.2 Adapting the Algorithm

	5 Discussion
	References

	Linear Time Algorithm for Tree-Child Network Containment
	1 Introduction
	2 Preliminaries
	2.1 Reducible Pairs
	2.2 Reducing Pairs from Networks

	3 Tree-Child Sequence
	3.1 Putting It All Together

	4 Implementation
	4.1 Generating the Datasets
	4.2 Results

	5 Discussion
	References

	PathOGiST: A Novel Methodpg for Clustering Pathogen Isolatespg by Combining Multiple Genotyping Signals
	1 Introduction
	2 Methods
	2.1 Correlation Clustering
	2.2 Consensus Clustering
	2.3 Evaluation

	3 Results
	3.1 Datasets and Genotyping Methods
	3.2 Single Signal Genotyping
	3.3 Comparison of the C4 and Exact ILP Methods
	3.4 Comparison with Existing Clustering Methods

	4 Conclusion
	A  Appendix Tables
	B  Appendix Figures
	References

	TreeSolve: Rapid Error-Correction of Microbial Gene Trees
	1 Introduction
	2 Definitions and Preliminaries
	3 Algorithmic Overview
	4 Experimental Evaluation
	4.1 Results

	5 Conclusion
	References

	RNA-Seq and Other Biological Processes
	Time Series Adjustment Enhancement of Hierarchical Modeling of Arabidopsis Thaliana Gene Interactions
	1 Introduction
	2 Mathematical and Statistical Preliminaries
	3 Time Series Adjustment
	4 Next State Time Series Adjustment Computation
	5 Genetic Algorithms
	6 Gene Interaction Model and Bayesian Model Averaging
	7 Next State Gene Interaction Models
	8 Conclusion and Further Considerations
	References

	BESTox: A Convolutional Neural Network Regression Model Based on Binary-Encoded SMILES for Acute Oral Toxicity Prediction of Chemical Compounds
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Binary Encoding Method for SMILES (BES)
	2.3 Model Architecture
	2.4 Implementation

	3 Results
	4 Conclusion
	References

	Stratified Test Alleviates Batch Effects in Single-Cell Data
	1 Introduction
	1.1 Related Works

	2 Methods
	2.1 Wilcoxon Rank-Sum Test
	2.2 Van Elteren Test

	3 Results
	3.1 Simulation Study
	3.2 Retina Data

	4 Discussion
	5 Summary
	References

	A Topological Data Analysis Approach on Predicting Phenotypes from Gene Expression Data
	1 Introduction
	2 Methods
	2.1 Setting up the Problem
	2.2 Topological Background
	2.3 TDA Workflow
	2.4 Machine Learning Framework
	2.5 Topological Data Analysis Implementation
	2.6 Gene Expression Data Processing

	3 Results and Discussion
	References

	BOAssembler: A Bayesian Optimization Framework to Improve RNA-Seq Assembly Performance
	1 Introduction
	2 Methods
	2.1 Assembly
	2.2 Bayesian Optimization
	2.3 Combine BO and Assembly

	3 Result and Discussion
	3.1 Datasets
	3.2 Experiment Procedure
	3.3 Experiment Results
	3.4 Discussion

	References

	Author Index
	495634_1_En_BookFrontmatter_OnlinePDF.pdf
	Preface
	Organization
	My Blue Whale: Seeking Order in a Chaotic World. An Autobiographical Reflection� (Abstract of Invited Talk)
	Contents


