1912.08913v2 [cs.CG] 18 Jun 2020

arxXiv

Reconstructing Embedded Graphs from
Persistence Diagrams

Robin Lynne Belton* Brittany Terese Fasy*' Rostik Mertz'
Samuel Mickaf David L. Millman' Daniel Salinas’
Anna Schenfisch* Jordan Schupbach* Lucia Williams'

June 22, 2020

Abstract

The persistence diagram (PD) is an increasingly popular topological
descriptor. By encoding the size and prominence of topological features
at varying scales, the PD provides important geometric and topological
information about a space. Recent work has shown that well-chosen (fi-
nite) sets of PDs can differentiate between geometric simplicial complexes,
providing a method for representing complex shapes using a finite set of
descriptors. A related inverse problem is the following: given a set of PDs
(or an oracle we can query for persistence diagrams), what is underlying
geometric simplicial complex? In this paper, we present an algorithm for
reconstructing embedded graphs in R? (plane graphs in RQ) with n ver-
tices from n? — n + d 4+ 1 directional (augmented) PDs. Additionally, we
empirically validate the correctness and time-complexity of our algorithm
in R? on randomly generated plane graphs using our implementation, and
explain the numerical limitations of implementing our algorithm.

1 Introduction

Topological data analysis (TDA) provides a set of promising tools to help an-
alyze data in fields as varied as materials science, transcriptomics, and neuro-
science [19] 24] 29]. The wide applicability is due to the fact that many forms
of data can be modeled as graphs or simplicial complexes, two widely-studied
types of topological spaces. Topological spaces are described in terms of their
invariants—such as the homotopy type or homology classes. Persistent homology
considers the evolution of the homology groups in a filtered topological space.

*Depart. of Mathematical Sciences, Montana State U.

tSchool of Computing, Montana State U.
{robin.bel‘con, brittany.fasy, samuelmicka, david.millman, annaschenfisch, jordan.schupbach,
luciawilliams}@montana.edu antonmertz@gmail.com dsalinasduron@westminstercollege.edu

Motivation The problem of manifold and stratified space learning is an ac-
tive research area in computational mathematics. For example, Chambers et
al. use persistent homology in a stratified space setting [5], describing an algo-
rithm to identify shapes that simplify a noisier shape, and then confirm that
the given simplification still satisfies the desired topological properties. Zheng
et al. also address a problem in space learning, and study the 3D reconstruction
of plant roots from multiple 2D images [31], using persistent homology to en-
sure the resulting 3D root model is connected. Another reconstruction problem
involves reconstructing road networks. Three common approaches to solving
these problems involve Point Clustering, Incremental Track Insertion, and In-
tersection Linking [I]. Ge, Safa, Belkin, and Wang develop a point clustering
algorithm using Reeb graphs to extract the skeleton graph of a road from point-
cloud data [I7]. The original embedding can be reconstructed using a principal
curve algorithm [23]. Karagiorgou and Pfoser give an algorithm to reconstruct a
road network from vehicle trajectory GPS data by identifying intersections with
clustering, then using vehicle trajectories to connect them [22]. Ahmed et al.
provide an incremental track insertion algorithm to reconstruct road networks
from point cloud data [2]. The reconstruction is done incrementally, using a
variant of the Fréchet distance to partially match input trajectories to the re-
constructed graph. Ahmed, Karagiorgou, Pfoser, and Wenk describe all these
methods in [I]. Finally, Dey, Wang, and Wang use persistent homology to recon-
struct embedded graphs. This research has also been applied to input trajectory
data [12]. Dey et al. use persistence to guide the Morse cancellation of critical
simplices. We see from these applications the necessity for reconstruction algo-
rithms, and in particular the necessity for reconstruction algorithms of graphs
since much of the research involving reconstruction of road networks involves
reconstructing graphs.

We explore the reconstruction of graphs from a widely used topological de-
scriptor of data, persistence diagrams. The problem of reconstruction for sim-
plicial complexes has received significant recent attention [10, I8, B0]. Our work
is motivated by [30], which proves that one can reconstruct simplicial complexes
in R? and R? using a subset of a parameterized infinite set of persistence di-
agrams. In this work, we use a version of persistence diagrams that includes
information that is not normally considered; thus, for clarity, we refer to these
descriptors as augmented persistence diagrams (APDs). Our approach differs
from those listed above because we provide a deterministic algorithm using
APDs generated from specific directional height filtrations to reconstruct the
original graph.

Our Contribution In this work, we focus on graphs embedded in R¢ (plane
graphs in R?) and use directional APDs to reconstruct a graph. In particular,
our main contributions are an upper bound on the number of APDs required
for reconstructing embedded graphs in RY, a polynomial-time algorithm for
reconstructing plane graphs, and the first deterministic reconstruction algorithm
for embedded graphs in arbitrary dimension.

The current paper is an extension of conference proceedings from CCCG
2018 [3]. We extend the proceedings paper in the following ways: (1) we revise
proofs for clarity; (2) we extend our algorithms for graph reconstruction to R%;
(3) we expand our literature review to include a discussion of recent results; (4)
we publicly release code for our algorithnﬂ; and (5) we provide an experimental
section to demonstrate the implementation.

2 Preliminaries

We begin by summarizing the necessary background information, but refer the
reader to [I3] for a more comprehensive overview of computational topology.

Axis-Aligned Directions When considering a standard unit basis vector
of R% in dimension i € {1,...,d}, we will write e; to denote the direction.

Plane Graphs Among our main objects of study are plane graphs with
straight-line embeddings (referred to simply as plane graphs throughout this
paper). A plane graph in R? is a set of vertices and a set of straight-line connec-
tions between pairs of vertices called edges (denoted by V and E respectively)
such that no two edges in the embedding cross. We frequently denote |V | =n
as the number of vertices in G. Throughout this paper, we make assumptions
about the positioning of vertices in graphs.

General Position Assumption. Let G be a graph embedded in R* with ver-
tices V.. We assume that for allz,y € V wherex = (x1,...,24) andy = (y1,.-.,Yd),
x; #y; for any i € {1,...,d}. Furthermore, we assume that no three vertices
are collinear when projected onto the subspace spanned by e; and es.

Height Filtration Let G be a plane graph. Consider a direction s in the
unit sphere S?~! in R¢; we define the lower-star filtration with respect to di-
rection s in two steps. First, let hy : G — R be defined for a simplex ¢ C G
by hs(0) = max,eq v - s, where v - s is the inner (dot) product and measures
height of v in the direction of s, since s is a unit vector. Thus, the height
hs(o) is the maximum height of all vertices in o. Then, for each ¢ € R, the
subcomplex Gy := h;1((—o0,t]) is composed of all simplices that lie entirely
below or at height ¢, with respect to direction s. Notice G, C G; for all r < ¢
and G, = G if no vertex has height in the interval [r,t]. The sequence of all
such subcomplexes, indexed by R, is the height filtration with respect to s, de-
noted Fs := F4(G). Notice that the complex changes a finite number of times
in this filtration. We note that the lower-star filtration is the discrete analog to
a lower-levelset filtration, where the complex is intersected with a raising closed
half-plane.

IThe code is available in a git repo hosted on GitHub: https://github.com/compTAG/
reconstruction.

https://github.com/compTAG/reconstruction
https://github.com/compTAG/reconstruction

Augmented Persistence Diagrams The persistence diagram for a filtered
simplicial complex K is a summary of the homology groups as the parameter
ranges from —oo to co; in particular, the persistence diagram is a set of birth-
death pairs of the form (b, d) in the extended plane, each with a corresponding
dimension k € Z>¢. In particular, each pair represents an independent generator
of the k-th homology group Hy(K;) for ¢ € [b,d). For technical reasons, all
points in the diagonal y = x are also included with infinite multiplicity. In [3], we
introduced the notion of the augmented persistence diagrams (APDs), which is
persistence diagram with an additional finite multi-set of points on the diagonal.
These points can be considered as the points explicitly computed in an algorithm
(such as the matrix reduction described in [I4]), but a formal definition using
the paired simplices of K is provided in [25, §2.5]. In the remainder of the
paper, when we use “diagram,” we mean APD; we write “persistence diagram”
when we mean the traditionally considered diagram. We denote the space of all
APDs by D.

For height filtrations of a graph embedded in R?, a zero-dimensional birth
occurs when the height filtration discovers a new vertex, representing a new
connected component. A one-dimensional birth occurs when a one-cycle is com-
pleted. Zero-dimensional deaths correspond to connected components merging.
One-dimensional deaths are all at oco. All higher-dimensional homology groups
are trivial.

For a direction s € S%1 let the directional augmented persistence dia-
gram D(Fs(K)) be the set of birth-death pairs from the height filtration Fs(K).
Since each point in D(F4(K)) has an associated dimension, we may restrict
our attention to the points in a specified dimension. In particular, for i € Z,
let D;(Fs(K)) be the diagram restricted to the points with dimension ZE' As
with the height filtration, we simplify notation and define D;(s) := D;(Fs(K))
when the complex is clear from context. We denote [3; to be the i-th Betti
number, i.e., the rank of the i-th homology group. In general, the complexity
of computing a diagram is matrix multiplication time, with respect to the num-
ber n of simplicies in the filtration; that is, the complexity is ©(n“), where w
corresponds to the smallest known exponent for matrix multiplication time. In
some cases (e.g., for computing Dy(F') or D4y_1(F) when F is a height filtration
in R?), the computation time is ©(na(n)), where « is the inverse Ackermann
function.

In what follows, for the unknown complex K, we assume that we have an
oracle O that takes a direction s € S¥~! and produces the diagram D(s) in that
direction. Additionally, we may restrict the diagram to specific dimension(s) by
specifying a dimension ¢ € Z and denoting the (sub-)diagram as D;(s).

We define T such that ©(Tg) is the time complexity for O to return this di-
agram. Notice that T = Q(|D(s)|), where |D(s)| denotes the number of off-
diagonal points in D(s).

Next, we state a lemma relating birth-death pairs. We omit the proof, but

2 The diagram D;(Fs(K)) is actually a sub-diagram of D(Fs(K)). As such, the set of all
diagrams for a given direction is counted as one diagram, not one for each dimension.

refer the reader to [I3], pp. 120-121 of §V.4] for more details.

Lemma 1 (Adding a Simplex). Letk € Z>o. Let L C K be simplicial complezes
that differ by a single k-simplex. Then, exactly one of the following is true:

1. Br(K) = Br(L) +1,
2. Br-1(K) = Br—1(L) — 1.

As a result of Lemmal [T} we can construct our filtration by adding one sim-
plex at a time and form a bijection between simplices of K and birth-death
events in the resulting APD. If GG is any graph, then the maximum number of
edges in G is n(n — 1)/2, and so |E| = O(n?). In the case when G is a plane
graph, |E| = O(n) due to the planarity of G. Furthermore, an APD will have
at least n points from the vertices in G corresponding to births in the zero-
dimensional diagram. These observations give us the following corollary on the
size of APDs for graphs.

Corollary 2 (Size of Augmented Persistence Diagrams). Let G be an embedded
graph and n be the number of vertices in G. Then an augmented persistence
diagram has O(n?) birth-death pairs. In the case when G is a plane graph, the
diagram has ©(n) birth-death pairs.

3 Related Work

In [30] Turner et al., introduced the persistent homology transform (PHT) that
represents a shape in R%—such as a simplicial complex—as a family of per-
sistence diagrams, parameterized by S?~!. In particular, the diagram for pa-
rameter s € S¥~1 is the persistence diagram defined by the height filtration in
direction s. The Euler characteristic transform (ECT) is defined similarly and
maps a shape to a parameterized family of Euler characteristic curves (ECCs),
where the ECC is the graph of Euler characteristic by filtration parameter, for
the same directional height filtrations. Turner et al. show that both of these
maps are injective for simplicial complexes in R? or R3. Recently, variations of
the PHT and ECT have attracted interest in other research domains and re-
searchers are realizing the potential of persistent homology as an effective data
descriptor. For example, Crawford et al. [9] introduces the smooth Euler char-
acteristic transform (SECT) as a method of predicting clinical outcomes using
MRIs from patients with glioblastoma multiforme. In [20], persistence diagrams
are used as features in deep neural networks for classification of surfaces and
graphs. Additional injectivity and representation results for ECT and other
topological transforms are studied in [I0] [I8]. Furthermore, a recent survey by
Oudot and Solomon explores the current state of inverse problems in topological
persistence as a potential tool for producing explainable data descriptors [28].
In order to leverage the injectivity of the PHT for shape comparison, two
approaches can be taken: (1) show that the PHT has a finite representation; (2)

provide an algorithm that reconstructs the shape from a finite set of directions.
In fact, (2) is a harder problem than (1), since an algorithm for reconstruction
will need to define a finite representation of the PHT. One method to tackle
approach (1) is to observe that diagrams only provide new information when
a transposition in the ordering of the filtration occurs; this observation is a
direct result of [7] and guides the intuition behind the current paper, as well
as |3, [10, [30]. For example, consider a finite geometric simplicial complex in R?
for some d > 2. Since transpositions can only happen when two vertices are
transposed in the filter, the set of directions in S~ for which two vertices occur
at the same height is finite. In other words, there are two hemispheres of S¢~! for
two given vertices, say v and w: one where v is seen before w and one where w
is seen before v. We take the hemispheres for all (g) pairs of vertices and
consider the regions for which the ordering is consistent. For each such region,
the persistence diagram continuously varies and no transpositions (or ‘knees’)
are witnessed [§]. In the current paper, we take approach (2) and show that
we can use an oracle to select a finite set of directions P C S?~! that allow us
to reconstruct the original complex from the directional augmented persistence
diagrams from directions in P. In particular, we prove that a quadratic number
of directions (with respect to the number of vertices) is sufficient to reconstruct
a graph.

4 Vertex Reconstruction

Next, we present an algorithm for recovering the locations of vertices of an
embedded graph. We begin with a plane graph G, where we are able to use
three directional augmented persistence diagrams. We then extend this method
for any embedded graph in R%, using d 4+ 1 directional augmented persistence
diagrams.

4.1 Vertex Reconstruction for Plane Graphs

The intuition behind vertex reconstruction is that for each direction, we identify
the lines on which the vertices of G must lie. We show how to choose specific
directions so that we can identify all vertex locations by searching for points in
the plane where three lines intersect. We call these lines filtration lines:

Definition 3 (Filtration Hyperplanes and Filtration Lines). Given a direc-
tion s € S and a height h € R, the filtration hyperplane at height h is
the (d — 1)-dimensional hyperplane, denoted {(s, h), through point h s and per-
pendicular to direction s, where x denotes scalar multiplication. Given a finite
set of vertices V. C RY, the filtration hyperplanes of V are the set of hyperplanes

L(‘S’ V) = {K(S’ hS(U))}veV-

In the special case when d = 2, we refer to filtration hyperplanes as filtration
lines.

By construction, all hyperplanes in IL(s, V') are parallel, and ¢(s, h) = £(—s, —h).
In particular, if v € V', where V is the vertex set of a plane graph G, then the
line (s, hg(v)) is perpendicular to s and occurs at the height where the filtra-
tion Fy(G) includes v for the first time. In what follows, we adopt the following
notation: given a direction s; € S and a point p € R?, define £;(p) := £(s;, hs, (p))
as a way to simplify notation.

By Lemmall} the births in the zero-dimensional augmented persistence dia-
gram are in one-to-one correspondence with the vertices of the plane graph G.
This means that, given a filtration line £(s,h), exactly one vertex in V lies
on {(s,h). Using filtration lines from three directions, we show a one-to-one
correspondence between three-way intersections of filtration lines and the ver-
tices in G in the next lemma:

Lemma 4 (Vertex Existence). Let G = (V, E) be a plane graph and let n = |V|.

Let 51,52 € St be linearly independent and further suppose that L(s1, V) and L(sa, V)
each contain n lines. Let A be the set of n? intersection points between lines

in L(s1,V) and in L(s2,V). Let s3 € S' such that each a € A has a unique
height in direction s3. Then, the following equality holds: V = L(ss, V)N A.

Proof. We prove this equality in two steps. First, we prove V' C L(s3, V) N A.
Let v € V. Then, for i € {1, 2,3}, there exists £;(v) € L(s;, V) such that v € ¢;(v).
Thus, v € ¢1(v) N l2(v) N ls(v) and

61(1}) M EQ(U) M 63(’0) = 61(1}) M (82('[}) N gg('l))) C L(Sl, V) N A,

by the definitions of filtration lines and A. Thus, V' C L(ss3, V) N A.

Next, we prove V' 2 L(s3, V)N A. Since each v € V C A has a unique
height in direction s3 and since every line of L(s3,V) contains a vertex, we
know that L(s3,V) has n lines. Thus, we claim that each of these parallel
lines intersects A. Assume, for contradiction, that there exists £ € L(sz, V)
such that AN ¢ = (. Since £ is a filtration line in direction s3, there ex-
ists v € V such that ¢ = ¢3(v), meaning that this v lies on ¢. However, v € A
since V C L(s3, V)N A C A, contradicting the hypothesis that AnN¢=0. O

If we generate vertical lines, Ly, = L(eq, V'), and horizontal lines, Ly = L(es, V),
for our first two directions, then only a finite number of directions in S! have
been eliminated for the choice of s3. In the next lemma, we choose a specific
third direction by considering a bounding region defined by the largest distance
between any two lines in Ly and smallest distance between any two consecutive
lines in Ly. Then, we pick the third direction so that if one of the corresponding
lines intersects the bottom left corner of this region then it will also intersect the
along the right edge of the region. In Figure[l} the third direction was computed
using this procedure with the region having a width that is the length between
the left most and right most vertical lines, and height that is the length between
the top two horizontal lines. Next, we give a more precise description of the
vertex localization procedure.

oOD | w

€1 €2 S§ |

Y

Figure 1: A vertex set V of size four, with three sets of filtration lines. Here,
notice that e; € S' and e, € S' are linearly independent, and the third direc-
tion s satisfies the assumptions of Lemma 4| The lines of L(ey, V') are the blue
vertical lines, L(eq, V') are the black horizontal lines, and L(s, V') are the pink
diagonal lines. The three-way intersection points (one from each set of filtration
lines) is in one-to-one correspondence to the vertices in V. Lines [4| through
in Algorithm [I| provide details for finding s3 using the width of the vertical
lines (marked w) and the minimum height difference between horizontal lines
(marked h).

Lemma 5 (Vertex Localization). Let Ly and Ly be n horizontal and n ver-
tical lines, respectively. Let w (and h) be the largest (and smallest) distance
between two lines of Ly (and Ly, respectively). Let B be the smallest axis-
aligned bounding region containing the intersections of lines in Ly U Ly . Let
s = (w,h/2)/||(w, h/2)||, i.e., a unit vector oriented towards the point (w,h/2).
Any line parallel to s can intersect at most one line of Ly in B.

Proof. Note that, by definition, s is a vector in the direction that is at a slightly
smaller angle than the diagonal of the region with width w and height h. As-
sume, by contradiction, that a line parallel to s can intersect two lines of Ly
within B. Specifically, let ¢1,¢> € Ly and let £, be a line parallel to s such that
the points ¢; N ¢y = (z;,y;) for i = {1,2} are the two such intersection points
within B. Since the lines of Ly are horizontal and by the definition of h, we
observe that |y; — y2| > h. Let w’ = |z1 — z2|, and observe w’ < w. Since the

slope of /, is 5, we have [y; — y2| < h, which is a contradiction. O

We conclude the discussion of plane graph reconstruction with an algorithm
to compute the coordinates of the vertices of the original graph in R2, using
only three diagrams.

Theorem 6 (Vertex Reconstruction). Let G be a plane graph. We can compute
the coordinates of all n vertices of G using three directional augmented persis-

tence diagrams in ©(nlogn + Tg) time, where O(T¢) is the time complexity of
computing a single directional augmented persistence diagram for G.

Proof. We proceed with a constructive proof that is presented as an algorithm
in Algorithm Let O be an oracle that takes a direction s € S* and returns the
zero-dimensional directional APD for the unknown plane graph G in direction s
in ©(T¢) time.

We start with requesting two directional augmented persistence diagrams
from the oracle, Dy(e1) and Dg(ez). Note that, by the General Position As-
sumption, no two vertices of G share an z- or y-coordinate. By Corollary
the sets L(e1, V) and L(ez, V) (which we do not explicitly construct) each con-
tain n distinct lines. Let Ly = {h1, ha, ..., hy,} be the resulting set of heights of
lines in L(ey, V'), in increasing order. Likewise, let Lo = {h}, R}, ..., Al } be the
ordered set of heights of lines in L(eq, V), also in increasing order. As a con-
sequence of Lemma [1} the birth times in the zero-dimensional diagrams are in
one-to-one correspondence to heights of the filtration lines. Thus, we can com-
pute L; and Ly from the APD in direction s in ©(n) time by iterating through
the points in the zero-dimensional augmented persistence diagram, then sorting
in ©(nlogn) time.

Let A be the set of n? intersection points between the lines in L(eq, V) and
in L(ez, V). Exactly n of these points correspond to vertices of V. The next
step is to identify a third direction s such that each line in L(s, V) intersects
with only one point in A, which we will use in order to distinguish which n
intersection points correspond to vertices in V.

Let w = h,, — hq and let h be the minimum of {h; —h}_;}" ,. In words, w is
the difference between the maximum and minimum heights of lines in L(ey, V)
and h is the minimum height difference between consecutive lines in L(eq, V);
see Figure[I] Note that we can compute w in ©(1) time from Ly and h in ©(n)
time from L,. Let B be the smallest axis-aligned bounding region containing
the intersection points A, and let s be a unit vector perpendicular to the vec-
tor [w, %]. We request the set Dy(s) from our oracle O. As before, the heights
of the lines in L(s, V') are the birth times of points in Dy(s). We save this set
of heights as L, in ©(n) time, and sort L, in ©(nlogn) time.

Finally, by Lemma [5| any line in L(s, V') intersects no more than one line
of L(eq, V') within B. Furthermore, by Lemma the n vertices in G are in one-
to-one correspondence with points in L(s, V)N A. We compute these three-way
intersections of (s, V)N A by intersecting the i-th line of L(es, V) with the i-th
line of L(s, V) in ©(n) time.

In total, this algorithm, summarized in Algorithm [1] uses three directional
diagrams, two requested from the oracle in Line |1 and one requested in Line
These two lines take ©(T¢) time each, Lines [4| and [10] take ©(nlogn) time
each, and the for loop in Lines [11] through [15| takes ©(n) time. All other lines
are linear or constant, with respect to m. Thus, the total time complexity
is O(nlogn + Tg). O

Algorithm 1 Reconstruct Vertices

Input: Oracle O for an unknown graph G = (V, E) C R2.

Output: Set of vertex locations.

Consult O to obtain diagrams Dy(e;) and Dg(e2)

Ly < birth times from points in Dy(eq)

Ly « birth times from points in Dy(e2)

Sort Ly and Lo in increasing order

w 4— maximum minus minimum in L;

h < minimum gap between two consecutive values in Lo

s < a unit vector perpendicular to the vector [w, h/2]

Consult O to obtain diagram Dg(s)

L < birth times from points in Dg(s)

Sort Ly in increasing order

:fort=1,2,...,ndo

{; < horizontal line with the i-th element of Lo as the y-coordinate
£} + line perpendicular to s at height equal to the i-th element of L
v; = Ei n é;

. end for

: return {v;},

D T e T S =S SO
A A

4.2 Vertex Reconstruction in R

The vertex reconstruction algorithm of the previous subsection generalizes to
higher dimensions. In R¢, a filtration line becomes a filtration hyperplane,
a (d — 1)-dimensional hyperplane that goes through one of the vertices in the
vertex set (and is perpendicular to a given direction). Similar to filtration lines,
filtration hyperplanes generated by a fixed direction are parallel and are in a
one-to-one correspondence with the vertices (for almost all directions).

Lemma 7 (Generalized Vertex Existence). Let G = (V, E) be a straight-line em-
bedded graph in R®. Let s1,50,...,5q be linearly independent directions in ST !
and further suppose that L(s;, V) contains n filtration hyperplanes for each
i €{1,2,...,d}. Choosing one hyperplane in each set L(s;, V'), the intersection
of these hyperplanes is a point. Let A denote the n® such intersection points.
Let sq41 € St such that each a € A has a unique height in direction sqi1-
Then, the following equality holds: V' =L(sq+1,V) N A.

Proof. This proof follows the same structure of the proof of Lemma[d] general-
izing R? to R,

We prove this equality in two steps. First, we prove V C L(sgq41,V) N A.
Let v € V. Then, for ¢ € {1,2,...,d + 1}, there exists £;(v) € L(s;, V) such
that v € £;(v). Thus, v € N1 (v), as was to be shown.

Next, we prove V' DO L(s441,V) N A. Assume, for contradiction, that
there exists a filtration hyperplane ¢ € IL(sq41,V) such that AN ¢ = 0.
Since £ € L(sq+1, V), there exists a vertex v € V such that £ = {4;1(v) and v

10

lies on £. However, since V C A from above, v is in ﬁle&(v) = A, contradicting
the hypothesis AN ¢ = 0. O

Just as in the case of plane graphs, we can now describe a method for locating
all vertices. The following lemma is a higher-dimensional analogue of Lemma

Lemma 8 (Generalized Vertex Localization). Let G = (V, E) be a straight-
line embedded graph in R, with n = |V|. Choosing one hyperplane in each
set L(e;, V) for 1 < i < d, the intersection of these hyperplanes is a point.
Let A denote the n® such intersection points. Then, we can find a direction
s € ST such that each hyperplane in L(s, V) intersects at most one of the n?
points in A in ©(dnlogn) time.

Proof. Let L; {h R Ry z) ceey hgf)} be the ordered set of heights of hyperplanes
in L(e;, V). Let w® = hgf) — {7 in other words, w® is the largest distance

)

between any two hyperplanes in the set L(e;, V), and let w = max;<;<q w®.
Let A" = min{héi) h(z)l}J ,; in other words, h(¥) is the smallest height
difference between any two (adjacent) hyperplanes in the set L(e;, V'), and
let h = %minlgigd h(9). Then, we consider the hyperplane that intersects the
origin and each point we; + (0,...0, 725) for i € {1,2,...,d — 1}. Next, we
choose a vector orthogonal to the hyperplane Wlthout loss of generality, we

choose
< 1 1 d—1>T
T=(——yeey—— ——

and observe that (we; + (0,...,0, ﬁ» -x =0 for each 7 € {1,2,...,d — 1}.
Finally, we define s = ﬁ

We now show that s satisfies the claim that each hyperplane in L(s, V)
intersects at most one of the n? points in A and that we can find s in ©(dnlogn)
time. Let p = (p1,pe,-..,pd) and ¢ = (q1, G2, - - ., ga) be points in A with p # g,
and assume, for contradiction, that they lie on the same hyperplane in L(s, V).
Then, p-s = q-s. By the definition of dot product, we have the following
equation (after multiplying s by ||z||):

T
L

d—1 1
—Pa — - —(pi —¢:) =0.
7 (Pa — 4a) 2 (i —a)
Since 4= &= L and w are positive numbers, we can rearrange this equality to obtain:
L d—1
— = — i — qi)| - 1

Recall that h = m1n1<z<d h; < hd Therefore, we know that 2h < hg < |pg — qal.

11

Applying Equation to this inequality, we obtain:

h d—1
< E .
2h _ 'lU(d* 1) i:1(pl QZ)
< I - (b —)]
~w(d-1) 15?3(—1 Pi— i
h
< —w.
w

Thus, we have 2h < h, which is a contradiction when n > 2. For the case
where n = 1, the vertex is (hgl), th), cee hgd)) and the (d + 1)®* direction is not
needed.

We analyze the complexity of computing w and h. For each direction e;, we
perform three steps. First, we sort the heights of L(e;, V) in ©(nlogn) time.
Second, we compute w® in constant time (as it is the maximum value minus
the minimum value of the heights). Third, we compute h(*) in ©(n) time. As
there are d dimensions, computing the sets {w®} and {h(?)} takes ©(dnlogn)
time. Computing w and h from the sets {w®} and {h(D} is O(d) time.
Thus, the bottleneck is sorting in each direction, which makes the total run-
time O(dn logn). O

Equipped with the above method for finding a suitable (d + 1) direction
to locate vertices in higher dimensions, we conclude this section with a theo-
rem describing the algorithm to compute the coordinates of the vertices of the
original embedded graph.

Theorem 9 (Vertex Reconstruction in Higher Dimensions). Let G be a straight-
line embedded graph in R? for d > 1. We can can compute the coordinates
of all n vertices of G using d + 1 directional augmented persistence diagrams
in ©(dntt 4+ dTg) time, where ©(Tg) is the time complexity of computing a
persistence diagram.

Proof. We proceed with a constructive proof, generalizing the constructive proof
from Theorem [6] and Algorithm Let O be an oracle that takes a direc-
tion s € S?~! and returns the Dy(s) in ©(Tg) time.

For i € {1,...,d}, we use this oracle to obtain Dg(e;). Note that, by the
General Position Assumption and Corollary [2] for each of these directions, we
have exactly n distinct filtration hyperplanes, in one-to-one correspondence with
the vertices. Note that, for a given direction e;, we store the filtration hyper-
planes as a list of the vertex heights. Choosing one hyperplane in each direction
yields d pairwise orthogonal hyperplanes; their intersection is a point in R% and
this point is a potential vertex location. In total, we have n? potential vertex
locations, of which only n are actual vertices. We denote this set of n? potential
vertex locations by A. Then, computing these lists of vertex heights takes ©(T¢)
time per dimension to account for computing and listing the points of the APD.

Let s be chosen as in Lemma [§ in ©(dnlogn) time. By Lemma [8 each
hyperplane /,(v) intersects at most one point in A for each v € V. Thus, by

12

Lemma |7} there are exactly n distinct intersections between L(s, V') and A, in
one-to-one correspondence with the n vertices of G.

Then, to identify vertex locations in R?, we employ the following brute force
algorithm. We check each element v € A for intersections with any hyper-
plane ¢ € (s, V). Since |A| = n? and |L(s, V)| = n, we have n?! checks that
we must perform, with each check taking ©(d) time. Thus, the total time com-
plexity of calculating V' from the d+ 1 sets of filtration hyperplanes is ©(dn?*?!)
and no additional augmented persistence diagrams are computed.

In total, this algorithm uses d+1 directional diagrams. The time complexity
of constructing the d+ 1 sets of filtration hyperplanes is ©(dnlogn + d1¢), and
an additional ©(dn?*t!) time to compute the actual vertex locations. Thus, the
total time complexity is ©(dnd*t! + dT¢). O

5 Edge Reconstruction

Given the vertices constructed in Section [f] we describe how to reconstruct the
edges in an embedded graph using n? —n augmented persistence diagrams. The
key to determining whether an edge exists or not is counting the degree of a
vertex for edges in the half plane “below” the vertex with respect to a given
direction. We begin with a method for reconstructing plane graphs, and then
extend our method to embedded graphs in R<.

5.1 Edge Reconstruction for Plane Graphs

We first define necessary terms, and then describe our algorithm for constructing
edges.

Definition 10 (Indegree of Vertex). Let G be a straight-line embedded graph in
R? with vertex set V.. Then, for every vertexv € V and every direction s € S,
we define:

INDEG(v, s) = |[{(v,v") € E | s-v" < s-v}|.

Thus, the indegree of v is the number of edges incident to v that lie below v,
with respect to direction s; see Figure [2]

Given a directional augmented persistence diagram, we prove that we can
compute the indegree of a vertex with respect to that direction:

Lemma 11 (Indegree from Diagram). Let G = (V, E) be a straight-line embed-
ded graph in R%. Let s € S ! such that no two vertices have the same height
with respect to s (and thus |L(s, V)| =n). Let Dy(s) and D1(s) be the zero- and
one-dimensional points of the augmented persistence diagram resulting from the
height filtration Fs(G). Then, for allv eV,

INDEG(v, 5) ={ (. y) € Do(s) | y = v- s}| + [{(z,y) € Da(s) |z = v - s}].

Furthermore, if n = |V| and d = 2 then INDEG(v, s) can be computed in O(n)
time. If d > 2, then INDEG(v, s) can be computed in O(n?) time.

13

S

Figure 2: A plane graph with a dashed line drawn intersecting v in the direction
perpendicular to s. Since four edges incident to v lie below v indicated by the
shaded region, with respect to direction s, INDEG(v, s) = 4.

Proof. Let v,v" € V such that s-v' < s- v, i.e., the vertex v’ is lower than v
in direction s. Let e = (v,v") € E. Then, by Lemma [l} we have two cases to
consider when e is added to F:

Case 1: e joins two disconnected components. If e connects two previ-
ously disconnected components, then e is associated with a death in Dg(s)
at height s - v. Moreover, since all deaths in Dy(s) are associated with adding
an edge, we know that the set of all edges that fall into this case with v as the
top endpoint is A = {(x,y) € Do(s) |y =v - s}.

Case 2: e creates a one-cycle. In this case, e is associated with a birth
in Do(s) at height s-v. Thus, we have that B = {(x,y) € D1(s) | x = v - s} is
the set of edges that fall into this case with v as the top endpoint.

The union A U B is the set of all edges ending at v with respect to s,
hence INDEG(v, s) = |A U B|. Furthermore, by Corollary [2] if d = 2, then G is
a plane graph and each of Dy(s) and D;(s) have ©(n) points, so we count and
sum the points joining two disconnected components or creating one-cycles at
height v in time ©(n) time. If d > 2, then each of Dy(s) and D1 (s) have O(n?)
points by Corollary 2] so we count and sum the points joining two disconnected
components or creating one-cycles at height v in time O(n?) time. O

In order to decide whether an edge (v,v’) exists between two vertices, we
look at the degree of v as seen by two close directions such that v’ is the only
vertex in what we call a wedge at v:

Definition 12 (Wedge). Let v € V, and choose 51,52 € S*~1. Then, a wedge
at v is the closure of the symmetric difference between the half planes below v
in directions s1 and sy. In the special case when d = 2, we refer to the wedge
as a bow tie.

In what follows, we use a wedge that is defined by a direction perpendicular
to an edge and slight tilts of that direction. In the proof of [30, Theorem 3.1],
Turner et al. also develop a construction that is conceptually similar to the

14

wedge for identifying links where changes in Betti numbers are observed when
considering the effect of the continuous rotation of directions above and below
the plane orthogonal to an edge.

Because we assume that no three vertices in our plane graph are collinear,
for each pair of vertices v,v’ € V, we always find a bow tie centered at v that
contains the vertex v’ and no other vertex in V; see Figure We use bow
tie regions to determine if there exists an edge between v and v’. In the next
lemma, we show how to decide if the edge (v,v’) exists in our plane graph.

by

Y

Figure 3: Bow tie B at v, denoted by the shaded area. B contains exactly one
vertex, v, so the only potential edge in B is (v, v’). In order to determine if there
exists an edge between v and v’, we compute INDEG(v, s1) and INDEG(v, s2),
i.e., the number of edges incident to v in the solid and dashed arcs, respectively.
An edge exists between v and v’ if and only if |INDEG(v, s1) — INDEG(v, s2)| = 1.

141

Lemma 13 (Edge Existence). Let G = (V, E) be a straight-line embedded graph
in R, Let v,v' € V. Let s1,s9 € S such that the wedge B at v defined by s,
and s2 satisfies: BNV \ {v} =v'. Then,

|INDEG(v, s1) — INDEG(v, 52)| =1 <= (v,0') € E.

Proof. Since edges in GG are straight lines, any edge incident to v either falls
entirely in the wedge region B or the interior of the edge is on the same side
(above or below) of both hyperplanes that define B. Let A be the set of edges
that are incident to v and below both hyperplanes; that is,

A={(v,w) e E|s1-w<s-vand sy w< s2- v}

Next, we split the wedge into the two infinite cones defined by the two connected
components of the interior of B. Let By be the set of edges in one cone and By
be the set of edges in the other cone. Then, by definition of indegree,

[INDEG (v, s1) — INDEC(v, s2)| = ||A| + [By| — |A| — [By|
= |[B1] — |Bal|.
As B contains one vertex v’, ||B;| — |Bz|| is one when (v,v’) € E, and zero

otherwise. Therefore, we conclude that |INDEG(v, s1) — INDEG(v, s2)| =1 <=
(v,v") € E, as required. O

15

Next, we prove that we can find the embedding of the edges in plane graphs
using ©(n?) directional augmented persistence diagrams. See [A|for an example
of walking through the reconstruction.

Theorem 14 (Edge Reconstruction). Let G = (V, E) be a plane graph. If V is
known, then we can compute E using n?—n directional augmented persistence di-
agrams in ©(n*Tg) time, where O(Tg) is the time complexity of computing a
single diagram.

Proof. We prove this theorem constructively, and summarize the construction
in Algorithm [2| In the algorithm, we first preprocess in order to find a global
bow tie half-angle. Then we iterate through each pair of vertices and test to
see if the edge exists. This edge test is done in two steps: first create a bow tie
that isolates the potential edge, then apply Lemma [13|to determine if the edge
exists or not by comparing the indegrees of v with respect to the two directions
defining the bow tie.

Preprocessing (Lines of Algorithm @) We initialize a set E of edges
to be the empty set in Line Next, we compute an angle that is sufficiently
small to be used to construct bow ties for every edge. For each vertex v € V, we
consider the cyclic ordering of the points in V'\ {v} around v; let c[v] denote this
ordered list of vertices. By Lemmas 1 and 2 of [26], we compute c[v] for allv € V
in ©(n?) total timeﬂ Once we have these cyclic orderings, we compute all n
lines through v and v; € V' \ {v} and can compute a cyclic ordering of all such
lines through v in ©(n) per vertex. (The step of obtaining the cyclic ordering of
lines given the cyclic ordering of vertices is similar to the merge step of merge
sort). Given two adjacent lines through v, consider the angle between these
lines; see the angles labeled 6; in Figure [df For each vertex v, the minimum
of such angles, denoted 0(v), is computed in Line [5in O(n) time. Finally, we
define 0 = %minvev 6(v) in Line [7} The value 6 will be used to compute bow
ties in the edge test. The runtime for this preprocessing is ©(n?) and requires
no augmented persistence diagrams.

Edge Test (Lines . Let O be an oracle that takes a direction s in S and
returns the APD for the unknown plane graph G in direction s in time O(7g).
Let v,v" € V such that v # v'. We now provide the two steps necessary to test
if (v,v") € E using only two diagrams.

The first step is to construct bow ties (Lines of Algorithm . Let s
be a unit vector perpendicular to vector v' — v, and let sq,s9 be the two unit
vectors that form angles +6 with s. Note that v and v’ are at the same height in
direction s, but different heights in direction s; and so (and, in fact, their order
changes between directions s; and s3). We consult the oracle O to obtain the
APDs D(s1) and D(s2). Note that we need the zeroth- and first-dimensional
diagrams only, and these are the only non-trivial diagrams for a graph. Let B be
the bow tie between £(s1, hs, (v)) and £(s2, hs,(v)). Note that, by construction, B

3Note that the naive approach would be to sort about each vertex independently, which
would take ©(n?logn) time, but the results of [26] improve this to ©(n?). The lemmas in
[26] use big-O notation, but the presented algorithm is actually asymptotically tight.

16

Figure 4: Ordering of all vertices about v. Lines are drawn through all vertices
and then angles are computed between all adjacent pairs of lines. The smallest
angle is denoted as 6(v). Here, 8(v) = 605.

contains exactly one point from V', namely v’. This first step of the edge test
takes ©(T¢) time and will use two augmented persistence diagrams.

The second step of the edge test is to compute indegrees of v in order to deter-
mine if there exists an edge between v and v’ (Lines of Algorithm [2). By
Lemmal[l1] we compute the indegrees INDEG (v, s1) and INDEG(v, s2) from D(s;)
and D(s2), respectively, in ©(n) time; see Lines[13|and[I4] Then, using Lemmal[13]
we determine whether the edge (v,v’) is in F by checking if |INDEG(v, s1) —
INDEG(v, s2)| = 1. If this equality holds, the edge exists; if not, the edge does
not; see Lines The bottleneck of the edge test is the ©(n) indegree com-
putation, the second step of the edge test takes ©(n) time. We do not compute
additional diagrams in this step.

We apply the edge test for all () = 3(n? — n) distinct pairs in V. For
all pairs, the complexity of the edge test uses n2 — n persistence diagrams and
takes ©(n?Tg + n?) time. Observing that the time to compute a diagram D
is Q(|D|) and using Corollary [2, we observe that T is ©(n). As a result, we
can simplify ©(n?Tg + n®) to ©(n?*Tg). Thus, the runtime of Algorithm
is ©(n?Tg) (©(n*Tg) for preprocessing and O(n?) for the edge tests). O

Putting together Theorem [6] and Theorem [I4] leads us to our primary result
for plane graphs:

Theorem 15 (Plane Graph Reconstruction). Let G = (V, E) be a plane graph
with n vertices embedded in R?. Algorithm|[1] and Algorithm|[q calculate the vertex
locations and edges using n® —n + 3 different directional augmented persistence
diagrams in ©(n?Tg) time, where ©(Tg) is the time complexity of computing a
single diagram.

Proof. By Theorem[f] Algorithm [T]reconstructs the vertices V using three APDs
in O(nlogn + Tg) time. By Theorem Algorithm [2| reconstructs the edges
E with n? — n directional augmented persistence diagrams in ©(n*Tg) time.
Thus, we can reconstruct all vertex locations and edges of G using n? —n + 3
augmented persistence diagrams in ©(n?*Tg) time. O

17

Algorithm 2 Reconstruct Edges

Input: Oracle O for an unknown graph G = (V, E) C R?; the vertex set V
Output: the edge set F

1:
2:

11:
12:

13:
14:
15:
16:
17:
18:
19:

E 0
¢ + use [26] to compute cyclic orderings for all vertices in V' stored as lists,
indexed by v € V

for v € V do
L]v] + cyclic ordering of lines though v, computed from c[v]
6(v) + minimum angle between any two lines in £[v]
end for
0= % min,cy 6(v)
for (v,v") € V x V,u#v' do
s < unit vector perpendicular to (v' — v)
s1 + s rotated by 6
s9 + s rotated by —6
Consult O to obtain D(s;) and D(s3) restricted to zero- and one-
dimensional points
Compute INDEG(v, s1) from D(s1)
Compute INDEG(v, s2) from D(s2)
if |INDEG(v, s1) — INDEG(v, 82)| == 1 then
Add (v,v") to E
end if
end for
return

18

5.2 Edge Reconstruction in R?

We can also reconstruct edges of graphs embedded in higher dimensions. We
can form a higher-dimensional version of the bow tie, referred to as a wedge,
which is the symmetric difference of two (d — 1)-dimensional hyperplanes.

Theorem 16 (Edge Reconstruction in Higher Dimensions). Let G = (V, E)
be a straight-line embedded graph in R? for some d > 1. If V is known, then
we can compute E using n? — n directional augmented persistence diagrams
in O(n*Tg + n*) time, where O(Tg) is the time complezity of computing a
single diagram.

Proof. Let P, ., be the subspace of R? spanned by e; and es. Let 7: R — R?
be defined by w(x1,x9,...,24) = (x1,22); in other words, m is the projection
t0 Pe, e,. Let Vi = m(V) and note that by the General Position Assumption, no
three vertices are collinear in V, and no two points share any coordinate values.
Since the vertex set V, lies in a two-dimensional plane, we can use Lines of
Algorithm [2] to compute an angle 6 for V..

Let v,v" € V. We use a method similar to the one defined in Lines of
Algorithm [2]to find an appropriate wedge to test whether an edge between v and
v’ exists. We define s; and s2 such that the lines ¢1(7(v)) and lo(7(v)), which
are perpendicular to s; and sy and go through 7 (v), define a bow tie at 7(v)
that isolates the potential edge (7(v),7(v")). This bow tie extends to a wedge
in R? by replacing the lines with hyperplanes that intersect P, ., orthogonally;
specifically, the line a;zy + asza = h in P, ., corresponds to the (d — 1)-
dimensional hyperplane, a1x1 + aszs + 0z + ... + 0xg = h in R, Let §; and
35 be directions in S%~! that define this wedge. Because 7 is an orthogonal
projection and points in V satisfy the General Position Assumption, v" must be
the only vertex in this wedge, thus it isolates the edge (v,v’), should it exist.

We then compute the indegrees of v with respect to §; and Sz, just as we
did in the two-dimensional case in Lines [I3] and [T4] of Algorithm 2] However,
we note that since our dimension may be greater than two, Lemma states
that this step takes O(n?) time for each indegree computation. We perform
indegree checks on (g) pairs of vertices. Finally, by Lemma we test for an
edge by determining if the difference between the indegrees is one using the
same technique as Lines of Algorithm

The runtime for computing the indegree for all (;) pairs of vertices and
reconstructing the edges is O(n?Tg + n*). Similar to Theorem the recon-
struction uses two diagrams for each pair of vertices, which is n? — n diagrams.

O

Putting together Theorem [9] and Theorem [I6] we obtain a graph reconstruc-
tion algorithm for graphs embedded with straight-line edges in R%:

Theorem 17 (Generalized Graph Reconstruction). If G = (V, E) is a straight-
line embedded graph in R? for d > 1, then V, E, and the embedding of G can

19

be computed using augmented persistence diagrams from n?> —n +d+ 1 differ-
ent directions in time O(dn®*! + n* + (d + n?)Tg), where O(Tg) is the time
complezity of computing a single diagram.

6 Experiments

In this section, we empirically validate both the correctness of our algorithm
and the runtime of various steps of the algorithm. Furthermore, we explore
the runtime of checking for the presence of edges for a fixed vertex set as the
number of edges varies. We conclude with an analysis of the probability of
having ‘bad input;’ that is, input with small angles. Timings were taken on a
MacBook Pro with a 2.3GHz Intel Core i5 processor, 8GB RAM, running macOS
Mojave 10.14.6. Our implementations were written in C++, compiled with the
LLVM toolchain version 10.0.1. Our code is publicly available and experiments
were run using the reconstruction library at git commit hash d9fd61 Oﬂ

Implementation To complement the theoretical results of this paper, we
have written the reconstruction code in C++. In the implementation, an oracle
is given a direction and returns an augmented persistence diagram. We use
the Dionysus 2.0 library [27] for computing the augmented persistence diagram.
We store the computed birth-death pairs in two lists, one for zero-dimension
points (representing connected components) and one for one-dimensional points
(representing loops).

We note that we have made some changes from the graph reconstruction
algorithm presented in the previous sections. In particular, instead of using [26]
to compute a cyclic ordering of all vertices in ©(n?), in Algorithm [2| Line
we implemented a naive approach of ordering around each vertex independently
in O(n?logn).

Data Our experimental data is a set of random plane graphs embedded in R?.
For n € Z*, we randomly generate n points from the uniform distribution over
the unit square. Next, we compute the Delaunay triangulation using the SciPy
library [2I] in Python. This random triangulation is similar to those of [4} 6] [11],
but uses a binomial point process with a uniform density rather than a Poisson
point process. Finally, we arrive at our random graph by setting a percentage «
of edges E from the triangulation to keep and delete edges until « - | E| remain.
The result is a random subgraph of a Delaunay triangulation.

Timing For each experiment about timing, we subtract out the time spent
computing diagrams as to capture only the time spent in the algorithm. In
addition, we run each experiment five times and report the average of the runs.

4The library is available at https://github.com/compTAG/reconstruction.

20

https://github.com/compTAG/reconstruction

6.1 Experimental Runtimes

Our first experiment validates the theoretical runtime of the plane graph re-
construction algorithm. We fix the percent of edges at « = 10% and vary the
number of vertices n € {10,20,...,80}. For each value of n, we reconstruct
ten random graphs as described in Paragraph [6lData. We track the time spent
in vertex and edge reconstruction and record the timings as described in Para-
graph [6] Timing.

In Figure [5a] and Figure [Bb] we plot the time for reconstructing vertices
and edges versus n, respectively. Times are measured in milliseconds and
each mark is the mean for five runs on each random graph. In Figure we
fit t = By + Binlogn to the experimental data, which had a RMSE of 0.0019 ms.
The figure agrees with Theorem [6] which showed that the vertex reconstruction
runtime is O(nlogn) (ignoring the time for computing diagrams). Figure
must be interpreted with a little more care. Recall that Theorem [I4]showed that
the edge reconstruction runtime is ©(n?Tg). However, the runtime of the loop
in Lines of Algorithm [2is O(n?), and in the experiments, we subtract the
time for computing diagrams. Thus, we expect the time to be upper-bounded
by n3. We fit the curve t = By + f1n® to the experimental data, which had a
RMSE of 0.45 ms. The figure agrees with Theorem [T4]

Time (Milliseconds)
Time (Milliseconds)

0.010 0.015 0.020 0.025 0.030
1

T T T T T T T T T T T T T T T T
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

Number of Vertices Number of Vertices
(a) Vertex Reconstruction (b) Edge Reconstruction

Figure 5: Experimental times for reconstructing plane graphs. For each value
of n, we record the vertex and edge reconstruction times for 10 random graphs
and compare to the theoretical runtimes for vertex reconstruction (Theorem [G)
and edge reconstruction (Theorem . The experimental timings agree with
the theoretical runtimes.

6.2 Effect of Edges on Runtime

Our second experiment investigates the effect of edge density on our algorithm.
Note that while our runtimes are expressed in the number of vertices, investigat-
ing the edges adds an additional insight. As in the previous section, each graph

21

is generated as described in Paragraph [l Data and we track the time spent in the
vertex and edge reconstruction as described in Paragraph[6} Timing. Specifically,
for a fixed Delaunay triangulation on a vertex set of size n, we vary the per-
cent of edges « from the Delaunay triangulation. We use « € {10,20,...,100}
and n € {10,25,50,100}. In Figure [6al and Figure each value of n is repre-
sented by a different line in the plot.

In the first part of this experiment, we investigate the effect of edge density
on vertex reconstruction times. In Figure [6b we see a constant relationship in
the average runtime per vertex as a function of the percent of edges. To confirm,
we fit the curve t = (g, with RMSE 218.5 ns for n = 10, 62.4 ns for n = 25, 33.4
ns for n = 50, and 18.2 ns for n = 100. Thus, as predicted by the analysis of
Theorem [6] the runtime of the vertex reconstruction algorithm is independent
of the number of edges.

3500

Number of Vertices

2500
1
Ny
o

1500
[
]
-
-
[
]

Average per Vertex Time (Nanoseconds)
0 500
u
u
Average Time per Edge Test (Nanoseconds)

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

Percent of Graph Edges Percent of Graph Edges
(a) Vertex Time (b) Edge Time

Figure 6: Experimental reconstruction times for plane graphs as the number
of edges increases. For each n, we record the vertex and edge reconstruction
times for 10 random graphs as we increase the percent of edges from a Delaunay
triangulation. Left: From (Theorem@, we expect that the vertex reconstruction
time is independent of the number of edges. Right: From (Theorem , for a
graph with n vertices and m edges, we conduct n?2—n edge tests on a given graph.
Each edge test compares two augmented persistence diagrams of size O(n+m).
Thus, we expect that the time grows linearly with respect to the number (and
hence the percent) of edges. In both plots, the experimental timings agree with
the theoretical run times.

In the second part of this experiment, we focus on the reconstruction time
of edges in the graph. In Figure [6b] we see a linear relationship in the average
runtime per edge as a function of the percent of edges. To confirm, we fit the
curve t = By + f1n, with RMSE 108.3 ns for n = 10, 72.9 ns for n = 25, 61.9 ns
for n = 50, and 33.4 ns for n = 100. The linear growth is somewhat unexpected
as the number of edges does not appear in the analysis of Theorem But,
recall that the edge reconstruction algorithm computes indegree. By Lemma/|11}

22

the computation takes time proportional to the size of the augmented persistence
diagrams (in dimensions zero and one combined). Moreover, the size of the one
dimensional diagram grows linearly with respect to the number of edges. Thus,
when « is small, as would be the case in sparse graphs, we see fewer cycles,
which makes D;(+) smaller. This results in a small improvement in runtime.

6.3 Minimum Angle

Very small angles cause numerical issues, which is a problem that we encountered
in the above experiments. In order to mitigate the issues, our code has an
assertion that bow tie half-angles are at least 10~% radians. We observed that
many of the experiments with over 50 vertices were failing this assertion. In
addition, a bounded angle assumption was used in [I0]. Thus, we investigate
the probability of encountering small angles, both with a back-of-the-envelope
calculation and empirical observations.

Back-of-the-Envelope Calculation Let a,b, and ¢ be three points sampled
i.i.d. from the uniform distribution on the unit square. We consider Zabc.
Without loss of generality, we can translate and rotate the points such that b is
at the origin, and c is on the positive xz-axis. Then, consider the line ba. If a
was randomly chosen, then any angle it makes with the positive z-axis (ba) is
equally likely, so

_2:100° 10°°
2o

P(Zabe < 107°) ~ 3.18¢—T7.

Furthermore, let S,, be a set of n (different) points sampled i.i.d. from the uni-
form distribution on the unit square. Notice that we can make () = n(n — 1)(n — 2)
angles defined by the points in S,. Let A, be the event that there exists an
angle less than 1076 in S,,. Assuming independence of angles in S, we have:

10-6)n<n1><n2>

s

P(A,) =1— (1—

We observe that P(A,) > 5% when n > 56. In the above runtime experiments,
it is not surprising that we see the assertion failing. In this calculation, we
assume that all angles are independent, so P(A,,) is an overestimation of the
true probability. We conjecture:

Conjecture 18 (Probability of Encountering Small Angles). Let G = (V, E)
be a randomly generated plane graph embedded in R?. If |V| > 55, then with
probability at least 5%, the minimum angle as described in Theorem 1s less
than 1076 radians.

Our final experiment is an investigation of the minimum angle of random
point sets. This is motivated by understanding the frequency of small angles,
and the extent to which our assertion and the assumption of [I0] may or may
not be limiting in practice.

23

Empirical Observations This experiment illustrates how the bounded angle
assumption is actually quite limiting, and that small angles appear with high
probability as the number of vertices increases.

log(Minimum Angle)

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290 310 330 350

Number of Vertices

Figure 7: Box plots for distributions of minimum angles for 100 random graphs
with n vertices. Any graph that has a minimum angle less than 10~°, denoted
by the horizontal line, encounters numerical errors from the reconstruction al-
gorithm. As the number of vertices increases, the number of graphs with a
minimum angle of 1079, and thus encountering numerical errors, increases.

We generated random sets of vertices of size n € {10,20,...,350}, and mea-
sured the minimum angle between all triples of vertices. In Figure [7] we show
the box plots of the minimum angles for 1000 random graphs for each n. In Fig-
ure we show the probability of a graph having a minimum angle less than 10~
as predicted by the theoretical model and by the experimental data. We notice
at n = 20, we begin to see minimum angles of 10~% radians appear in our ran-
dom graphs. At n = 70, the number of random graphs with a minimum angle
of 1076 radians or less becomes even more substantial, with 8% of the angles
less than 106 experimentally. This experiment suggests that for plane graphs
with n > 50, our algorithm may encounter numerical errors due to small an-
gles. And, as n grows into the hundreds, the probability gets close to one. For
the range of n values we tested experimentally, we see—as we expected—that
the theoretical back-of-the-envelope calculation upper bounds the experimental
probability of finding a small angle. As we mentioned above, the differences in
Figure [§] are due to the fact that the predicted probability is done assuming
independence of angle.

24

1.0

| —— Experimental
- Predicted

0.8
|

0.6
|

Probability of Failure
0.4

I I I I I I I I
0 50 100 150 200 250 300 350

Number of Vertices

Figure 8: Probability of failure (encountering an angle less than 1076) from
experimental data (solid line) and the theoretical model (dashed line). The
theoretical model provides an upper bound for the experimental probability of
finding a small angle.

7 Discussion

In this paper, we address the problem of reconstructing embedded graphs using
persistence diagrams through the following three main contributions.

1. We provide the first deterministic algorithm for reconstructing a plane
graph using (directional, augmented) persistence diagrams. For a graph
with n vertices embedded in R?, this algorithm uses n? —n + 3 directional
APDs in ©O(n?Tg) time.

2. We extend the algorithm for reconstructing plane graphs to reconstructing
graphs embedded in R? for d > 2. This algorithm uses n2 —n+d+ 1
directional APDs in O(dn?t! 4+ n* + (d + n?)Tg) time.

3. We experimentally validate the correctness and time complexity of our
algorithm for reconstructing plane graphs by implementing the algorithm
and testing the implementation on randomly generated plane graphs. We
found that that the empirical probability of encountering numerical issues
are likely to occur even for graphs with only 20-50 vertices.

We identify a number of avenues for future work. We recently extended the
methods given here to reconstruct geometric simplicial complexes (not just em-

25

bedded graphs) using APDs; see the preprint [16]. It seems possible, however,
that the algorithm for computing the generalization of indegree could be im-
proved. Additionally, it would be interesting to explore reconstruction problems
with other topological descriptors, such as Euler characteristic curves (ECCs).
Indeed, in [15], we identified some of the challenges in reconstructing with ECCs.
Thus, algorithmic reconstruction with ECCs is still largely unexplored. In other
extensions of this work, one could consider variants of the inverse problem and
classify simplicial complexes, up to some topological invariant (e.g., homotopy
type) instead of up to geometric representation. One can hope that computing
such a classification would require fewer persistence diagrams than is required
for a complete geometric reconstruction.

Finally, our algorithms rely on augmented persistence diagrams, but we
conjecture that the corresponding persistence diagrams (without the explicitly
stored on-diagonal points) can be used to sufficiently differentiate one shape
from another. If proven, this conjecture would close the gap between our theo-
retical results for APDs and the use of PDs in practice, such as in [20].

Acknowledgements This material is based upon work supported by the Na-
tional Science Foundation under the following grants: CCF 1618605 (BTF,
SM, RM), DBI 1661530 (BTF, DLM, LW), DGE 1649608 (RLB, AS), and
DMS 1664858 (RLB, BTF, AS, JS). Additionally, RM thanks the Undergradu-
ate Scholars Program for both travel funding and undergraduate research grants.
All authors thank the CompTaG club at Montana State University and the
CCCG reviewers for their thoughtful feedback on this work. In particular, we
thank Brad McCoy for checking the examples for correctness. Finally, we thank
the reviewers for their careful reading and constructive comments.

References

[1] AHMED, M., KARAGIORGOU, S., PFOSER, D., AND WENK, C. Map
construction algorithms. In Map Construction Algorithms. Springer, 2015,
pp. 1-14.

[2] AEMED, M., AND WENK, C. Constructing street networks from GPS
trajectories. In European Symposium on Algorithms - ESA ‘12 (2012),
Springer, pp. 60-71.

[3] BELTON, R. L., FAasy, B. T., MERTZ, R., MICKA, S., MILLMAN, D. L.,
SALINAS, D., SCHENFISCH, A., SCHUPBACH, J., AND WILLIAMS, L.
Learning simplicial complexes from persistence diagrams. In Canadian
Conference on Computational Geometry - CCCG ‘18 (August 2018). Also
available at ArXiv:1805.10716.

[4] Boots, B., OKABE, A., AND SUGIHARA, K. Spatial tessellations. Geo-
graphical Information Systems 1 (1999), 503—526.

26

[5]

[16]

CHAMBERS, E. W., Ju, T., LETSCHER, D., L1, M., Torp, C. N., AND
YAN, Y. Some heuristics for the homological simplification problem. In
Canadian Conference on Computational Geometry - CCCG ‘18 (August
2018).

CHENAVIER, N., AND DEVILLERS, O. Stretch factor in a planar Poisson-
Delaunay triangulation with a large intensity. Advances Applied Probability
50 (2018), 3556.

COHEN-STEINER, D., EDELSBRUNNER, H., AND HARER, J. Stability of
persistence diagrams. Discrete & Computational Geometry 37, 1 (2007),
103-120.

COHEN-STEINER, D., EDELSBRUNNER, H., AND MoOROzZOV, D. Vines
and vineyards by updating persistence in linear time. In Proceedings of

the twenty-second Annual Symposium on Computational Geometry (2006),
ACM, pp. 119-126.

CRAWFORD, L., MoNoD, A., CHEN, A. X., MUKHERJEE, S., AND
RABADAN, R. Predicting clinical outcomes in glioblastoma: An appli-
cation of topological and functional data analysis. Journal of the American
Statistical Association (2019), 1-12.

CURRY, J., MUKHERJEE, S., AND TURNER, K. How many directions de-
termine a shape and other sufficiency results for two topological transforms.
arXiv:1805.09782, 2018.

DEVILLERS, O., AND NOIZET, L. Walking in a planar Poisson-Delaunay
triangulation: Shortcuts in the Voronoi path. International Journal of
Computational Geometry and Applications (2018), 1-12.

Dey, T. K., WANG, J., AND WANG, Y. Graph reconstruction by dis-
crete Morse theory. In 34th International Symposium on Computational
Geometry (SoCG 2018) (2018), vol. 99, pp. 31:1-31:15.

EDELSBRUNNER, H., AND HARER, J. Computational Topology: An Intro-
duction. American Mathematical Society, 2010.

EDELSBRUNNER, H., LETSCHER, D., AND ZOMORODIAN, A. Topological
persistence and simplification. Discrete & Computational Geometry (2002),

511-533.

Fasy, B. T., MickaA, S., MILLMAN, D. L., SCHENFISCH, A., AND
WiLLiaMs, L. Challenges in reconstructing shapes from Euler charac-
teristic curves. In Fall Workshop on Computational Geometry - FWCG
‘18 (2018).

Fasy, B. T., Micka, S., MILLMAN, D. L., SCHENFISCH, A., AND
WiLLiAMS, L. Persistence diagrams for efficient simplicial complex re-
construction, 2019. arXiv:1912.12759.

27

[17]

[26]

[27]

[28]

[29]

GE, X., SAFA, I. I., BELKIN, M., AND WANG, Y. Data skeletonization
via Reeb graphs. In Advances in Neural Information Processing Systems -
NIPS ‘11 (2011), pp. 837-845.

GHRIST, R., LEVANGER, R., AND MaI1, H. Persistent homology and Euler
integral transforms. Journal of Applied and Computational Topology 2, 1-2
(2018), 55-60.

GiusTi, C., PastaLkova, E., Curro, C., AND ITSkov, V. Clique topol-

ogy reveals intrinsic geometric structure in neural correlations. Proceedings
of the National Academy of Sciences 112, 44 (2015), 13455-13460.

Horer, C., KwiTT, R., NIETHAMMER, M., AND UHL, A. Deep learning
with topological signatures. In Advances in Neural Information Processing
Systems (2017), pp. 1634-1644.

JoNEs, E., OLiPHANT, T., PETERSON, P., ET AL. SciPy: Open source
scientific tools for Python, 2001-.

KARAGIORGOU, S., AND PFOSER, D. On vehicle tracking data-based road
network generation. In Proceedings of the 20th International Conference on
Advances in Geographic Information Systems - SIGSPATIAL ‘12 (2012),
ACM, pp. 89-98.

KEGL, B., KrRzYzAK, A., LINDER, T., AND ZEGER, K. Learning and
design of principal curves. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22, 3 (2000), 281-297.

LEE, Y., BARTHEL, S. D., DLOoTKO, P., Moosavi, S. M., Hess, K., AND
Swmit, B. Quantifying similarity of pore-geometry in nanoporous materials.
Nature Communications 8 (2017), 15396.

MickA, S. Algorithms to Find Topological Descriptors for Shape Recon-
struction and How to Search Them. PhD thesis, Montana State University,
2020.

MiLLMAN, D. L., AND VERMA, V. A slow algorithm for computing the

Gabriel graph with double precision. In Canadian Conference on Compu-
tational Geometry - CCCG ‘11 (2011).

Morozov, D. Dionysus, a c++ library for computing persistent homology.
http://mrzv.org/software/dionysus2/, 2007.

OuboT, S., AND SOLOMON, E. Inverse problems in topological persistence.
arXiv:1810.10813, 2018.

Rizvi, A. H., CaMARA, P. G., KANDROR, E. K., RoBERTS, T. J.,
SCHIEREN, I., MANIATIS, T., AND RABADAN, R. Single-cell topological
RNA-seq analysis reveals insights into cellular differentiation and develop-
ment. Nature Biotechnology 35, 6 (2017), 551.

28

http://mrzv.org/software/dionysus2/

[30] TURNER, K., MUKHERJEE, S., AND BOYER, D. M. Persistent homology

transform for modeling shapes and surfaces. Information and Inference: A
Journal of the IMA 3, 4 (2014), 310-344.

[31] ZHENG, Y., GU, S., EDELSBRUNNER, H., ToMmasI, C., AND BENFEY, P.
Detailed reconstruction of 3D plant root shape. Proceedings of the IEEE
International Conference on Computer Vision (11 2011), 2026-2033.

A Demonstration of Plane Graph Reconstruc-
tion

We give an example of reconstructing a plane graph embedded in R2. Consider
the complex, G, given in Figure[0] The vertices of G are

vV ={(-1,2),(0,-1),(0.25,0),(1,1)},
and edges are given by the following pairs of vertices,

E = {((_17 2)’ (07 _1))5 ((07 _1)7 (02570))5 ((07 _1)7 (17 1))v ((02570)’ (17 1))}

Vertex Reconstruction We find vertex locations using the algorithm de-
scribed in Section [d] Note, that in this example, n = 4. Using the persistence
diagrams from height filtrations in directions e; = (1,0) and eo = (0,1), we
construct the set of lines L(e;, V) = {(=1,¥),(0,y),(0.25,y), (1,y) | v € R}
and L(es, V) = {(z,2), (z, —1), (z,0), (z,1) | # € R} as shown in Figure[9d The
set L(er, V) UL(ea, V) of 2n = 8 lines has n? = 16 possible locations for the ver-
tices at the intersections in A. We show these filtration lines and intersections
in Figure [9b}

We compute the third direction, s, using the algorithm outlined in Theo-
rem [Recall, that we need to find the maximum width between two lines
in L(e1,V), denoted by w, and smallest height between two adjacent lines
in L(ez, V), denoted by h. In our example, w=1—(-1) =2and h=2—-1=1.
Then, we use the rectangle of width, w, and height, h, to choose a direc-
tion s. We pick s to be a unit vector perpendicular to [w, h/2]. In particular,
we compute s = (—0.243,0.970) € S!. Then, the four three-way intersections
in L(e1, V)UL(e2, V)UL(s, V) identify all Cartesian coordinates of the vertices
in the graph.

Edge Reconstruction Next, we reconstruct all edges of G as described in
Section In order to do so, we first compute the bow tie half-angle de-
noted by 6. For each vertex v € V, we consider the cyclic ordering of the
points in V' \ {v} around v and compute 6(v), which is the minimum an-
gle between all adjacent pairs of lines through v. Noting that the vertex
set is V = {(-1,2),(0,-1),(0.25,0), (1,1)}, we find §(v) to be approximately
0.237,0.219,0.399, and 0.180 radians, respectively. Then, we fix € so that
6 = min, 0(v)/2 = 0.09.

29

T I T
-1.0 -0.5 00 05 1.0 -1.0 -0.5 0.0 05 1.0
X X

co—o a oco—o A 0o—o [AY
£ o Hy £ o Hp £ o Hy
8 1 A H 8 1 A H 8 1 A H
0 0 0
-1 -1 -1
T T T T T T T T T T T T T T T
-0 1 2 o0 -1 0 12 ©o -1 0 1 2 o0
Birth Birth Birth
(d) Diagrams for es (e) Diagrams for ey (f) Diagrams for s

Figure 9: Example of vertex reconstruction from three directions, es, e; and s
with corresponding persistence diagrams built for height filtrations from these
directions. The filtration lines are the dotted lines superimposed over the com-
plex.

30

Now, for each of the n(n — 1)/2 pairs of vertices (v,v") € V2, we construct
a bow tie B and then use this bow tie to determine whether an edge exists
between the two vertices. We go through two examples: one for a pair of ver-
tices that does have an edge between them, ((0.25,0),(1,1)), and one for a
pair that does not, ((0.25,0),(—1,2)). First, consider the pair v = (0.25,0)
and v = (1,1). To construct the bow tie at v that contains v, we first find a
unit vector perpendicular to the vector that points from v to v’. Here, our unit
vector is s = (—0.8,0.6). Now, we find s, s such that the bow tie at v has half-
angle 6 with s. We choose s = (—0.851,0.526) and sy = (—0.743,0.669). By
Lemma |11} we use the persistence diagrams from these two directions to com-
pute INDEG(v, s1) and INDEG(v, s2). We observe that Dg(s1) contains exactly
one birth-death pair (z,y) such that y = v - s; and D;(s;) has one birth-death
pair such that = v - s;. Thus, INDEG(v, $1) = 2. On the other hand, Dy(s2)
contains exactly one birth-death pair (x,y) such that y = v - so, but Dj(s2)
contains no birth-death pair such that © = v - s3. So INDEG(v, s2) = 1. Now,
since [INDEG (v, 51) —INDEG(v, s2)| = 1, we know that (v,v’) € E, by Lemmal[13]

For the second edge example, consider the pair of vertices v = (0.25,0)
and v' = (—1,2). Again, we construct the bow tie at v containing v, by
finding a unit vector perpendicular to the vector, (v — v). We choose this
to be s = (0.848,0.530). Then, the s; and sy that form angle 6 with s
are s1 = (0.892,0.452) and sy = (0.797,0.604). Again by Lemma we ex-
amine the zero- and one-dimensional persistence diagrams from these two di-
rections to compute the indegree from each direction for vertex v. In Dy(s1),
we have one pair (z,y) that dies at y = v - $1, but in D;(s1), no pair is born
at z = v - s1. So INDEG(v, s1) = 1. We see the exact same for sy, which means
that [INDEG(v, 1) — INDEG(v, $2)| = 0. Since Lemma [13] tells us that we have
an edge between v and v’ only if the absolute value of the difference of indegrees
is one, we know that there is no edge between vertices (0.25,0) and (—1,2).

In order to reconstruct all edges, we perform the same computations for all
pairs of vertices. After doing this, we obtain the desired plane graph as shown
in Figure [9

31

00— A oco—{ o A
1
- £ 2 o Hp £ o Hyp
< N L A
LS 8 1 L 8 1 H
518 0 0|
1
1.0 05 00 05 1.0 T T e e T
X -10 1 2 [e3] -1 0 1 2 (<]
Birth Birth
a) Bow tie lines for s; . .
(2) (b) Diagram for s1 (c) Diagram for so
and so
2
00— O A co—{o A
1
0 C a1 AH a1 AH
Va N o
1
1.0 05 00 05 1.0 1Y 1 T 1 T Iy T] T
X -1 1 o -1 1 o
Birth Birth

(d) Bow tie lines for s (e) Diagram for s; (f) Diagram for so

and s2

Figure 10: Example of edge reconstruction for two edges. The first edge (top
row) exists while the second edge (bottom row) does not. The bow tie is given
on the left while the persistence diagrams Dg(s1) and Dq(s1) are given in the
middle and the persistence diagrams Dg(s3) and D;(s3) are given on the right.
The dotted lines indicate v - s; and v - s9 in diagrams for s; and sy respectively.

32

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Vertex Reconstruction
	4.1 Vertex Reconstruction for Plane Graphs
	4.2 Vertex Reconstruction in Rd

	5 Edge Reconstruction
	5.1 Edge Reconstruction for Plane Graphs
	5.2 Edge Reconstruction in Rd

	6 Experiments
	6.1 Experimental Runtimes
	6.2 Effect of Edges on Runtime
	6.3 Minimum Angle

	7 Discussion
	A Demonstration of Plane Graph Reconstruction

