
Safety and Completeness in Flow Decompositions
for RNA Assembly ?

Shahbaz Khan1,2[0000−0001−9352−0088], Milla Kortelainen2[0000−0003−1590−0987],
Manuel Cáceres2[0000−0003−0235−6951], Lucia Williams3[0000−0003−3785−0247], and

Alexandru I. Tomescu2[0000−0002−5747−8350]

1 Department of Computer Science and Engineering, IIT Roorkee, India
shahbaz.khan@cs.iitr.ac.in

2 Department of Computer Science, University of Helsinki, Finland
{shahbaz.khan,milla.kortelainen,manuel.caceresreyes,alexandru.tomescu}@helsinki.fi

3 School of Computing, Montana State University, USA
luciawilliams@montana.edu

Abstract. Flow decomposition has numerous applications, ranging from
networking to bioinformatics. Some applications require any valid decom-
position that optimizes some property as number of paths, robustness,
or path lengths. Many bioinformatic applications require the specific de-
composition which relates to the underlying data that generated the flow.
Thus, no optimization criteria guarantees to identify the correct decom-
position for real inputs. We propose to instead report the safe paths,
which are subpaths of at least one path in every flow decomposition.

Ma et al. [WABI 2020] addressed the existence of multiple opti-
mal solutions in a probabilistic framework, which is referred to as non-
identifiability. Later, they gave a quadratic-time algorithm [RECOMB
2021] based on a global criterion for solving a problem called AND-Quant,
which generalizes the problem of reporting whether a given path is safe.

We present the first local characterization of safe paths for flow de-
compositions in directed acyclic graphs, giving a practical algorithm for
finding the complete set of safe paths. We also evaluated our algorithm
against the trivial safe algorithms (unitigs, extended unitigs) and a pop-
ular heuristic (greedy-width) for flow decomposition on RNA transcripts
datasets. Despite maintaining perfect precision our algorithm reports
≈ 50% higher coverage over trivial safe algorithms. Though greedy-width
reports better coverage, it has significantly lower precision on complex
graphs. On a unified metric (F-Score) of coverage and precision, our algo-
rithm outperforms greedy-width by ≈ 20%, when the evaluated dataset
has significant number of complex graphs. Also, it has superior time
(3−5×) and space efficiency (1.2−2.2×), resulting in a better and more
practical approach for bioinformatics applications of flow decomposition.

Keywords: safety · flow decomposition · DAGs · RNA assembly
? We thank Romeo Rizzi and Edin Husić for helpful discussions. This work was par-
tially funded by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 851093,
SAFEBIO) and partially by the Academy of Finland (grants No. 322595, 328877)
and the US NSF (award 1759522). The full version of the paper is available at [15].

2 S. Khan et al.

1 Introduction

Network flows are a central topic in computer science, that define problems with
countless practical applications. Assuming that the flow network has a unique
source s and a unique sink t, every flow can be decomposed into a collection of
weighted s-t paths and cycles [11]; for directed acyclic graphs (DAGs), such a de-
composition contains only paths. Such a path (and cycle) view of a flow is used to
optimally route information or goods from s to t, where flow decomposition is a
key step in problems such as network routing [13] and transportation [26]. Find-
ing the decomposition with the minimum number of paths and possibly cycles (or
minimum flow decomposition) is NP-hard, even for a DAG [37]. On the theoreti-
cal side, this hardness result led to research on approximation algorithms [13,30],
and FPT algorithms [17,34]. On the practical side, many approaches employ a
standard greedy-width heuristic [37], of repeatedly removing an s-t path carrying
the most flow. Another pseudo-polynomial-time heuristic called Catfish [32] tries
to iteratively simplify the graph so that smaller decompositions can be found.

However, for a flow network built by superimposing a set of weighted paths,
and one may seek the decomposition corresponding to that set of weighted paths.
Such a decomposition is used by the more recent and prominent application of
reconstructing biological sequences (RNA transcripts [35,34,40] or viral quasi-
species genomes [5,4]). Each flow path represents a reconstructed sequence, and
so a different set of flow paths encodes a different set of biological sequences,
which may differ from the real ones. If there are multiple optimal solutions,
then the reconstructed sequences may not match the original ones, and thus be
incorrect. While many popular multiassembly tools use minimum flow decom-
positions, Williams et al. [41] reported that in an error-free transcript dataset
20% of human genes admit multiple minimum flow decomposition solutions.

1.1 Safety Framework for Addressing Multiple Solutions

Motivated by such an RNA assembly application, Ma et al. [20] were the first to
address the issue of multiple solutions to the flow decomposition problem under a
probabilistic framework. Later, they [21] solve a problem (AND-Quant), which,
in particular, leads to a quadratic-time algorithm for the following problem: given
a flow in a DAG, and edges e1, e2, . . . , ek, decide if in every flow decomposition
there is always a decomposed flow path passing through all of e1, e2, . . . , ek. Thus,
by taking the edges e1, e2, . . . , ek to be a path P , the AND-Quant problem can
decide if P (i.e., a given biological sequence) appears in all flow decompositions.
This indicates that P is likely part of some original RNA transcript.

We build upon the AND-Quant problem, by addressing the flow decom-
position problem under the safety framework [36], first introduced for genome
assembly. For a problem admitting multiple solutions, a partial solution is said
to be safe if it appears in all solutions to the problem. For example, a path P
is safe for the flow decomposition problem, if for every flow decomposition into
paths P, it holds that P is a subpath of some path in P. Further, P is called
w-safe if in every flow decomposition, P is a subpath of some weighted path(s)

Safe and Comp. in Flow Decomp. for RNA Assembly 3

in P whose total weight is at least w. Bioinformatics applications [35,32,17] com-
monly use a minimum cardinality path decomposition (or path cover [19]). We
consider any flow decomposition as a valid solution, not only the ones of min-
imum cardinality, which is motivated by both theory and practice. On the one
hand, since minimum-cardinality flow decomposition is NP-hard [37], we believe
that finding its safe paths is also intractable. On the other hand, given the issues
with sequencing data, practical methods usually incorporate different variations
of the minimality criterion [5,4]. Thus, safe paths for all flow decompositions are
likely correct for many practical variations of the flow decomposition problem.

Safety has precursors in combinatorial optimization, as persistency. Costa [10]
studied the persistent edges in all maximum bipartite matchings. Incidentally, for
the maximum flow problem persistent edges always having a non-zero flow value
in any maximum flow solution were studied [9]. In bioinformatics, safety has been
previously studied for the genome assembly problem which at its core solves the
problem of computing arc-covering walks on the assembly graph. Again since the
problem admits multiple solutions where only one is correct, practical genome
assemblers output only those solutions likely to be correct. The prominent ap-
proach dating back to 1995 [14] is to compute trivially correct unitigs (having
internal nodes with unit indegree and unit outdegree), which can be computed in
linear time. Unitigs were generalised first in [29], and later [23,16] to be extended
by adding their unique incoming and outgoing paths. These extended unitigs,
though safe, are not guaranteed to report everything that can be correctly as-
sembled, presenting an important open question [25] about the assembly limit
(if any). This was finally resolved by Tomescu and Medvedev [36] for a spe-
cific genome assembly formulation (single circular walk) by introducing safe and
complete algorithms, which report everything that is theoretically reported as
safe. Its running time was later optimized in [7] and [8]. Safe and complete algo-
rithms were also studied by Acosta et al. [1] under a different genome assembly
formulation of multiple circular walks. Recently, Cáceres et al. [6] studied safe
and complete algorithms for path covers in an application on RNA Assembly.

1.2 Safety in Flow Decomposition for RNA Assembly

In bioinformatics, flow decomposition is prominently used in RNA transcript as-
sembly, which is described as follows. In complex organisms, a gene may produce
multiple RNA molecules (RNA transcripts, i.e., strings over an alphabet of four
characters), each having a different abundance. Given a sample, one can par-
tially read the RNA transcripts and find their abundances using high-throughput
sequencing [38]. This technology produces short overlapping substrings of the
RNA transcripts. The main approach for recovering the RNA transcripts from
such data is to build an edge-weighted DAG from these fragments, then to trans-
form the weights into flow values by various optimization criteria, and finally to
decompose the resulting flow into an “optimal” set of weighted paths (i.e., the
RNA transcripts and their abundances in the sample) [22]. A common strategy
for choosing the optimal set of weighted paths is to look for the parsimonious
solution, i.e., the solution with the fewest paths. Since this problem is NP-hard,

4 S. Khan et al.

in practice many tools use the popular greedy-width heuristic [35,28]. Greedy-
width is also used in the assemblers for the related problem of viral quasispecies
assembly [4]. Further, some tools attempt to incorporate additional informa-
tion into the flow decomposition process, such as by using longer reads or super
reads [28,41]. Despite the large number of tools and methods that have been
developed for RNA transcript assembly, there is no method that consistently
reports the correct set of transcripts [28,42]. This suggests that the addressing
the problem under the safety framework may be a promising approach. However,
while a safe and complete solution clearly gives the maximally reportable correct
solution, it is significant to evaluate whether such a solution covers a large part
of the true transcript, to be useful in practice. A possible application of such
partial and reliable solution is to consider them as constrains (see e.g. [41]) of
real RNA transcript assemblers, to guide the assembly process of such heuristics.
Another possible application could be to evaluate the accuracy of assemblers:
does the output of the assembler include the safe and complete solution?.

1.3 Our Results

Our contributions can be succinctly described as follows.

1. Simple local characterization and optimal verification algorithm:
We characterize a safe path P using its local property called excess flow.

Theorem 1. For w > 0, a path P is w-safe iff its excess flow fP ≥ w.

The previous work [21] on AND-Quant describes a global characterization
using the maximum flow of the entire graph transformed according to P ,
requiring O(mn) time. Instead, the excess flow is a local property of P which
is computable in time linear in the length of P . This also directly gives a
simple verification algorithm which is optimal.

Theorem 2. Given a flow graph (DAG) having n vertices and m edges,
it can be preprocessed in O(m) time to verify the safety of a path P in
O(|P |) = O(n) time.

2. Simple enumeration algorithm: The above characterization also results
in a simple algorithm for reporting all maximal safe paths by using an arbi-
trary flow decomposition of the graph.

Theorem 3. Given a flow graph (DAG) having n vertices and m edges, all
its maximal safe paths can be reported in O(|Pf |) = O(mn) time, where Pf

is some flow decomposition.

This approach starts with a candidate solution and uses the characterization
on its subpaths in an efficient manner (a similar approach was previously
used by [10,1,6]).

Safe and Comp. in Flow Decomp. for RNA Assembly 5

3. Empirically improved approach for RNA assembly: On simulated
RNA splice graphs, safe and complete paths for flow decomposition provide
precise RNA assemblies while covering most of RNA transcripts. They have
≈ 50% better coverage over previous notions of safe paths, while maintaining
the perfect precision ensured by safety. Further, for the combined metric of
coverage and precision (F-Score), they outperform the popular greedy-width
heuristic significantly (≈ 20%) and previous safety algorithms appreciably
(≈ 13%). Though our approach takes 1.2 − 2.5× time than the previous
safety algorithms requiring equivalent memory, the greedy-width approach
takes roughly 3− 5× time and 1.2− 2.2× memory than our approach. The
significance of our approach in quality parameters increases with the increase
in complex graph instances in the dataset, with significantly better perfor-
mance over greedy-width, without losing a lot over previous safe algorithms.

2 Preliminaries and Notations

We consider a DAG G = (V,E) with n vertices and m edges, where each edge
e has a positive flow (or weight) f(e) passing through it. We assume the graph
is connected and hence m ≥ n. For each vertex u, fin(u) and fout(u) denote
the total flow on its incoming edges and outgoing edges, respectively. A vertex
v is called a source if fin(v) = 0 and a sink if fout(v) = 0. Every other vertex
v satisfies the conservation of flow fin(v) = fout(v), making the graph a flow
graph. For a path P , |P | denotes the number of its edges. For a set of paths P =
{P1, · · · , Pk} we denote its total size (number of edges) by |P| = |P1|+ · · ·+ |Pk|.

For any flow graph (DAG), its flow decomposition is a set of weighted paths
Pf such that the flow on each edge of the flow graph equals the sum of the
weights of the paths containing the edge. A flow decomposition of a graph can
be computed in O(|Pf |) = O(mn) time using the simple path decomposition
algorithm [3]. A path P is called w-safe if, in every possible flow decomposition,
P is a subpath of some paths in Pf whose total weight is at least w. If P is
w-safe with w > 0, we call P a safe flow path, or simply safe path. Intuitively, for
any edge e with non-zero flow, we consider where did the flow on e come from?
We would like to report all the maximal paths ending with e along which some
w > 0 weight always “flows” to e (see Figure 1). A safe path is left maximal (or
right maximal) if extending it to the left (or right) with any edge makes it unsafe
(i.e. not safe). A safe path is maximal if it is both left and right maximal. A set
of safe paths is called complete if it consists of all the maximal safe paths.

Some previous notions of safety for other problems also naturally extend to
the flow decomposition problem as follows. The paths having internal nodes with
unit indegree and unit outdegree are called unitigs [14], which are trivially safe
because every source-to-sink path which passes through an edge of unitig, also
passes through the entire unitig contiguously. Further, a unitig can naturally be
extended to include its unique incoming path (having nodes with unit indegree),
and its unique outgoing path (having nodes with unit outdegree). This maximal
extension of a unitig is called the extended unitig [23,16], which is similarly safe.

6 S. Khan et al.

Fig. 1: The prefix of the path (blue) up to e contributes at least 2 units of flow to
e, as the rest may enter the path by the edges (red) with flow 4 and 2. Similarly,
the suffix of the path (blue) from e maintains at least 1 unit of flow from e, as
the rest may exit the path from the edges (red) with flow 5 and 2. Both these
safe paths are maximal as they cannot be extended left or right.

For some graphs the above notions already define the safety of flow decompo-
sition completely. Millani et al. [24] defined a class of DAGs called funnels, where
every source-to-sink path is uniquely identifiable by at least one edge, which is
not used by any other source-to-sink path. Considering such an edge as a trivial
unitig (having a single edge), its extended unitig is exactly the corresponding
source-to-sink path, making it safe. Thus, in a funnel all the source-to-sink paths
are naturally safe and hence trivially complete. Moreover, it implies that a funnel
has a unique flow decomposition, making the problem trivial for funnel instances.

However, for non-funnel graphs unitigs and extended unitigs are safe but
potentially not complete. Note that both unitigs and extended unitigs are also
safe for problems dealing with unweighted graphs (eg. path cover). Hence, they
do not use the flows on the edges of the graph, potentially missing some paths
that are safe for flow decomposition but not for problems like path cover.

3 Characterization of Safe and Complete Paths

Safety of a path can be characterized by its excess flow defined as follows.

Definition 1 (Excess flow). Excess flow fP of a path P = {u1, u2, ..., uk} is

fP = f(u1, u2)−
∑

ui∈{u2,...,uk−1}
v 6=ui+1

f(ui, v) = f(uk−1, uk)−
∑

ui∈{u2,...,uk−1}
v 6=ui−1

f(v, ui)

the former and later formulations are diverging and converging, respectively.

Remark 1. Alternatively, the converging and diverging formulations are

fP =

k−1∑
i=1

f(ui, ui+1)−
k−1∑
i=2

fout(ui) =

k−1∑
i=1

f(ui, ui+1)−
k−1∑
i=2

fin(ui).

The converging and diverging formulations are equivalent by the conservation
of flow on internal vertices. The idea behind excess flow fP (see Figure 2) is that
even in the worst case, the maximum leakage , or the flow leaving (or entering) P

Safe and Comp. in Flow Decomp. for RNA Assembly 7

Fig. 2: The excess flow of a path P (left) is the incoming flow (blue) that neces-
sarily pass through the whole P despite the flow (red) leaving P at its internal
vertices. Analogously (right), it is the outgoing flow (blue) that necessarily came
through the whole P despite the flow (red) entering P at its internal vertices.

at the internal nodes, is the sum of the flow on the outgoing (or incoming) edges
of the internal nodes of P , that are not in P . Hence, if the value of incoming flow
(or outgoing flow) is higher than this maximum leakage, then this excess value
fP necessarily passes through the entire P . The following results give the simple
characterization and an additional property (see [15] for proof) of safe paths.

Theorem 1. For w > 0, a path P is w-safe iff its excess flow fP ≥ w.

Proof. The excess flow fP of a path P trivially makes it w ≤ fP -safe by def-
inition. If fP < w, we can prove that P is not w-safe by modifying any flow
decomposition having w flow on P to leave only fP flow (or 0, if fP < 0) on P
as follows. In Figure 2 (diverging), consider a flow path P ′ entering P through
edge e1 (except first edge (blue)) and leaving P at an edge e2 (red) except last
edge of P . Since fP < w, it is not possible that every path leaving P using a red
edge starts at the first blue edge (by definition of fP), hence P ′ always exists.
We modify P ′ by using flow on P to form two paths, which enter from e1 and
leave at the last edge, and which enter from the first edge and leave at e2. We
can repeat such modifications until flow on P is fP (or 0, if fP < 0) due to
conservation of flow. Additionally, for a path to be safe, it must hold that w > 0.

Lemma 1. Adding an edge (u, v) to the start or the end of a path in the flow
graph, reduces its excess flow by fin(v)−f(u, v), or fout(u)−f(u, v), respectively.

4 Simple Verification and Enumeration Algorithms

The characterization of a safe path in a flow graph (Theorem 1) can be directly
adapted to simple algorithms for verification and enumeration of all maximal
safe paths. We preprocess the graph to compute the incoming flow fin(u) and
outgoing flow fout(u) for each vertex u in O(m) time. Using Remark 1 we can
verify if a path P is safe in O(|P |) = O(n) time, proving the following theorem.

Theorem 2. Given a flow graph (DAG) having n vertices and m edges, it can
be preprocessed in O(m) time to verify the safety of a path P in O(|P |) = O(n)
time.

8 S. Khan et al.

For reporting the maximal safe paths we use a candidate decomposition of the
flow into paths, and verify the safety of its subpaths using the characterization
and a scan with the two-pointer approach. The candidate flow decomposition can
be computed in O(mn) time using the classical flow decomposition algorithm [11]
resulting in O(m) paths Pf each of O(n) length. Now, we use the two-pointer
scan along each path P ∈ Pf as follows. We start with the subpath containing
the first two edges of the path P . We compute its excess flow f , and if f > 0 we
append the next edge to the path on the right and incrementally compute its
excess flow by Lemma 1. Otherwise, if f ≤ 0 we remove the first edge of the path
from the left and incrementally compute the excess flow similarly by Lemma 1
(removing an edge (u, v) would conversely modify the flow by fin(v)− f(u, v)).
We stop when the end of P is reached with a positive excess flow.

The excess flow can be updated in O(1) time when adding an edge to the
subpath on the right or removing an edge from the left. If the excess flow of a
subpath P ′ is positive and on appending it with the next edge it ceases to be
positive, we report P ′ as a maximal safe path by reporting only its two indices
on the path P . Thus, given a path of length O(n), all its maximal safe paths
can be reported in O(n) time, and hence require total O(mn) time for the O(m)
paths in the flow decomposition Pf , resulting in the following theorem.

Theorem 3. Given a flow graph (DAG) having n vertices and m edges, all its
maximal safe paths can be reported in O(|Pf |) = O(mn) time, where Pf is some
flow decomposition.

5 Experimental Evaluation

We now evaluate the performance of our safe and complete algorithm by com-
paring it with the most promising algorithms for flow decomposition. Since the
performance of various algorithms closely depend on the input graphs, we con-
sider some practically relevant datasets to evaluate their true impact. As the
most significant application of flow decomposition derives from RNA assembly,
we consider the flow networks extracted as splice graphs of simulated RNA-
Seq experiments. That is, starting from a set of RNA transcripts, we simulate
their expression levels and superimpose the transcripts to create a flow graph.
Evaluating our approach in such perfect scenario allows us to remove the biases
introduced by real RNA-Seq experiments [33] and focus the features offered by
the each technique instead. Further, the performance of algorithms also closely
depend on the complexity k of a graph, that we measure as the number of paths
in the ground truth decomposition of the graph. Thus, we present our results
with regards to the complexity k of the input graph instances.

We first investigate the practical significance of safety by comparing our safe
solution to a popularly used flow decomposition heuristic that is also scalable.
The greedy-width [37] heuristic decomposes the flow by sequentially selecting the
heaviest possible path, resulting in a simple algorithm that is both scalable and
performs well in practice. However, any flow decomposition algorithm may not

Safe and Comp. in Flow Decomp. for RNA Assembly 9

always report the ground truth paths that originally built the instance of the flow
graph. Thus, it is important to measure the reported solution using a precision
metric which evaluates the correctness of the solution. We thus investigate how
the precision of greedy-width varies particularly as the value of k increases.

We then investigate the practical significance of completeness as reported by
our solution, over the previously known safe solutions as reported by unitigs
and extended unitigs (recall Section 2). Note that every safe solution would
always score perfectly in a precision metric by definition. Hence, all safe solutions
would always outperform greedy-width (or any flow decomposition algorithm)
in precision metrics. However, this perfect precision comes at the cost of the
amount of the solution that is reported. Intuitively, this can be measured using
some coverage metrics which describe how much of the ground truth sequence
is included in the reported paths. Note that any flow decomposition algorithm
will perform better than any safe algorithm by definition, as the safe paths are
always subpaths of the paths reported by any flow decomposition algorithm.
Further, the extended unitigs would clearly outperform unitigs, and our safe
paths would clearly outperform both unitigs and extended unitigs. We thus
investigate how the coverage of various algorithms varies with respect to the
greedy-width particularly as the value of k increases.

Finally, to understand the overall impact of different algorithms, where safe
algorithms as compared to greedy-width clearly outperform in precision metrics
and underperform in coverage metrics, we address both coverage and precision
measures using a single metric, i.e., F-score. We thus investigate the variation
in F-score over different values of k. In addition, to understand the practical
utility of the algorithms we also investigate their performance measures in terms
of running time and space requirements.

5.1 Datasets

We consider two RNA transcripts datasets, generated based on approach of Shao
et al. [32]. They create “perfect” flow graphs where the true set of transcripts
and abundances is always a flow decomposition of the graph (hence satisfy con-
servation of flow). They start with this flow decomposition and create the input
instances by superimposing them into a single graph, adding a single source s
(and sink t) with an edge to the beginning (and end) of each transcript.

Funnel instances: In funnels [24] all paths are safe and the problem is trivial
(recall Section 2). Our evaluation thus ignores these trivial funnel instances. For
the sake of completeness we address the funnels in our full paper [15].

Catfish dataset: We consider the dataset first used by Shao and Kingsford [32],
which includes 100 simulated human transcriptomes for human, mouse, and
zebrafish using Flux-Simulator [12]. Additionally, it includes 1,000 experiments
from the Sequence Read Archive, with simulated abundances for transcripts
using Salmon [27]. In both cases, the weighted transcripts are superimposed to
build splice graphs as described above. This dataset has also been used in other

10 S. Khan et al.

flow decomposition benchmarking studies [17,41]. There are 17,335,407 graphs
in total in this dataset, of which 8,301,682 are non-trivial (47.89%). However,
in this dataset the details about the number of bases on each node (exons or
pseudo-exons) are omitted, which results in an incomplete measure of coverage
and precision. Moreover, this dataset has negligible complex graph instances
(having large k). Hence, we do not include its evaluation in the main paper,
rather defer it to the full paper [15] for the sake of completeness.

Reference-Sim dataset: We consider a dataset [39] containing a single simu-
lated transcriptome as follows. For each transcript on the positive strand in the
GRCh.104 homo sapiens reference genome, it samples a value from the lognor-
mal distribution with mean and variance both equal to −4, as done in the default
settings of RNASeqReadSimulator [18]. It then multiplies the resulting values
by 1000 and round to the nearest integer. Then it excludes any transcript that
is rounded to 0. There are 17,941 total graphs in this dataset, of which 10,323
are non-trivial (57.54%). In this dataset, we also have access to the genomic
coordinates (and hence number of bases) represented by nodes, allowing us to
compute more practically relevant coverage and precision metrics.

5.2 Evaluation Metrics

All metrics are computed in terms of bases for the Reference-Sim dataset. How-
ever, since the Catfish dataset omits the base information its metrics are com-
puted in terms of exons or pseudo-exons (vertices in the flow graph). For every
algorithm, R denotes a reported path (for Catfish) or a reported safe subpath
(for unitigs, extended unitigs, and safe complete) of the solution. In addition, T
denotes a path in the set of ground truth transcripts provided in the dataset.
For each graph, we compute the following metrics which were also used earlier
by [6] for safety in constrained path covers:

Weighted precision: We classify a reported path R as correct if R is a subpath
of some ground truth transcript T of the flow graph. Weighted precision is
the total length of correctly reported paths divided by the total length of
reported paths. The commonly used precision metric [28,31] for measuring
the accuracy of RNA assembly methods considers only those paths as correct
which are (almost) exactly contained in the ground truth decomposition.
Further, the precision is computed as the number of correctly reported paths
divided by the total reported paths. However, since all the safe algorithms
reports (possibly) partial transcripts, we use subpaths instead of (almost)
exactly same paths. To highlight how much is reported correctly instead
of how many, we use weighted precision to give a better score for longer
correctly reported paths.

Maximum relative coverage: Given a ground truth transcript T and a reported
path R, we define a segment of R inside T as a maximal subpath of R
that is also subpath of T . We define the maximum relative coverage of a
ground truth transcript as the length of the longest segment of a reported

Safe and Comp. in Flow Decomp. for RNA Assembly 11

path inside T , divided by the length of T . The corresponding value for the
entire graph is the average of the values over all T . While it is common in
the literature [28,31] to report sensitivity (the proportion of ground truth
transcripts that are correctly predicted), we measure correctness based on
coverage since all the safe algorithms report paths that (possibly) do not
cover an entire transcript.

F-score: The standard measure to combine precision and sensitivity is using an
F-score, which is the harmonic mean of the two. In our evaluation we cor-
respondingly use the weighted precision and the maximum relative coverage
for computing the F-score.

5.3 Implementation and Environment Details

We evaluate the following algorithms in our experiments.
Unitigs: It computes the unitigs, by considering each unvisited edge in the

topological order and extending it towards the right as long as the internal
nodes have unit indegree and unit outdegree. The result ignores single edges.

ExtUnitigs: It computes the extended unitigs, by considering each unitig and
single edges, and extending it towards the left and right as long as the internal
nodes have unit indegree and unit outdegree, respectively.

Safe&Comp: It computes the safe and complete paths for flow decomposition
using our enumeration algorithm described in Section 4. Since the metrics
evaluation scripts uses each safe path individually (similar to other algo-
rithms), we output all safe paths completely which requires output size (and
hence time) of O(mn2) instead of O(mn) as stated in Theorem 1.

Greedy: It computes the greedy-width heuristic using Catfish [32] with the -a
greedy parameter.

All algorithms are implemented in C++, whereas the scripts for evaluating
metrics are implemented in Python. The Unitigs, ExtUnitigs, and Safe&Comp
implementations use optimization level 3 of GNU C++ (compiled with −O3
flag), whereas the Greedy uses the optimizations of the Catfish pipeline. The
Unitigs, ExtUnitigs, and Safe&Comp additionally require a post processing step
using Aho Corasick Trie [2] for removing duplicates, and prefix/suffixes to make
the set of safe paths minimal. However, the time and memory requirements are
evaluated considering only the algorithm, and not post processing and metric
evaluations which are not optimized. All performances were evaluated on a laptop
using a single core (i5-8265U CPU 1.60GHZ) having 15.3GB memory. The
source code of our project is available on Github 4 under GNU Genral Public
License v3 license.

5.4 Results

We first evaluate the significance of safety among the reported solution. Fig-
ure 3a compares the weighted precision of all the algorithms on the Reference-
Sim dataset distributed over k. All the safe algorithms clearly report perfect
4 https://github.com/algbio/flow-decomposition-safety

12 S. Khan et al.

(a) Weighted Precision (b) Max Relative Coverage (c) F-Score

Fig. 3: Evaluation metrics on graphs w.r.t. k for the Reference-Sim dataset.

precision as expected. However, the precision of the Greedy algorithm sharply
declines with the increase in k, almost linearly to 30% for k = 35. This may be
explained by the sharp increase in the number of possible paths in graphs with
increase in k, which can be used by any flow decomposition algorithm. Hence,
the significance of safety becomes very prominent as k increases .

We then evaluate the significance of completeness of the safe algorithms.
Figure 3b compares the maximum relative coverage of all the algorithms on the
Reference-Sim dataset distributed over k. As expected, Greedy outperforms all
the other, followed by Safe&Comp, ExtUnitigs and Unitigs. However, note that
as k reaches 20 Safe&Comp, ExtUnitigs and Unitigs sharply fall to 75%, 60%
and 40%, while Greedy maintains around 95% coverage. Overall, Safe&Comp is
almost always ≈ 85 − 90% of that of Greedy, whereas ExtUnitigs and Unitigs
falls to 60% and 40% respectively. Hence, the Safe&Comp manages to maintain
perfect precision without losing a lot on coverage, demonstrating the importance
of completeness among the safe algorithms.

Figure 3c supports the above inference by evaluating the combined metric
F-Score, where Safe&Comp dominates Unitigs and ExtUnitigs by definition.
Safe&Comp also dominates Greedy as k approaches 10. It is also important to
note that both ExtUnitigs and Unitigs eventually dominate Greedy for a slightly
larger value of k > 20 and k > 30, respectively. This shows the significance of
considering Safe algorithms for complex graphs. However, the significance of the
Safe&Comp as the number of graphs with such higher complexities also reduces
sharply (see full paper [15]).

Hence, we evaluate a summary of the above results averaged over all graphs
irrespective of k. Table 1 summarizes the evaluation metrics for all the algorithms
for simple graphs (k < 10) and complex graphs (k > 10), and both. While on
the simpler graphs Greedy dominates Safe&Comp mildly (≈ 3%), for complex
graphs it is dominated significantly (≈ 20%) by Safe&Comp and appreciably
(≈ 8%) by ExtUnitigs. However, despite the larger ratio of simpler graphs, the
collective F-score over all graphs is still (≈ 4%) better for Safe&Comp over
Greedy which signifies the applicability of Safe&Comp over Greedy.

Safe and Comp. in Flow Decomp. for RNA Assembly 13

Graphs Algorithm Max. Coverage Wt. Precision F-Score

k ≥ 2
(100%)

Unitigs 0.51 1.00 0.66
ExtUnitigs 0.69 1.00 0.81
Safe&Comp 0.82 1.00 0.90

Greedy 0.98 0.81 0.86

2 ≤ k ≤ 10
(68%)

Unitigs 0.55 1.00 0.70
ExtUnitigs 0.73 1.00 0.84
Safe&Comp 0.84 1.00 0.91

Greedy 0.99 0.91 0.94

k > 10
(32%)

Unitigs 0.41 1.00 0.58
ExtUnitigs 0.61 1.00 0.75
Safe&Comp 0.76 1.00 0.86

Greedy 0.95 0.60 0.69
Table 1: Summary of evaluation metrics for the Reference-Sim dataset.

Algorithm

Reference-Sim Catfish
Human Zebrafish Mouse Human Human (salmon)
25.6MB 122MB 137MB 157MB 2.5GB

Time Mem Time Mem Time Mem Time Mem Time Mem
Unitigs 0.68 3.58 13.82 3.51 15.62 3.53 18.22 3.54 303.72 3.66

ExtUnitigs 0.99 3.63 18.31 3.52 20.87 3.57 23.64 3.56 404.50 3.68
Safe&Comp 2.56 4.47 20.17 3.56 25.76 3.66 28.59 3.54 667.27 3.84

Greedy 7.71 4.88 108.30 6.00 127.38 6.29 148.46 6.34 2684.30 8.47
Table 2: Time (s) and Memory (MB) taken by different algorithms on datasets.

Finally, we evaluate the applicability of the above algorithms in practice,
by comparing their running time and peak memory requirements. Since all the
algorithms are implemented in the same language (C++) and evaluated on the
same machine, it is reasonable to directly compare these measures. In Table 2,
we see that Unitigs clearly are the fastest, where ExtUnitigs takes roughly 1.3−
1.5× time. Safe&Comp takes upto roughly 1.2 − 2.5× time than ExtUnitigs,
and Greedy requires roughly 3− 5× time than Safe&Comp. The peak memory
requirements of the safe algorithms are very close (within 5%-25%), whereas
Greedy requires roughly 1.1 − 2.2× more memory than Safe&Comp. Overall,
for the performance measures Safe&Comp shows a significant improvement over
Greedy, without losing a lot over the trivial algorithms.

6 Conclusion

We study the flow decomposition in DAGs under the Safe and Complete paradigm,
which has numerous applications including the more prominent multi-assembly
of biological sequences. Previous work characterized such paths (and their gener-
alizations) using a global criterion. Instead, we present a simpler characterization
based on a more efficiently computable local criterion, which is directly adapted

14 S. Khan et al.

into an optimal verification algorithm, and a simple enumeration algorithm. In-
tuitively, it is a weighted adaptation of extended unitigs which is a prominent
approach for computing safe paths.

Our experiments show that our algorithm outperform the popularly used
greedy-width heuristic for RNA assembly instances having significant complex
graph instances, both on quality (F-score) and performance (running time and
memory) parameters. On simple graphs, Greedy outperforms Safe&Comp and
Safe&Comp outperforms ExtUnitigs mildly (≈ 3 − 5%). However, on complex
graphs, Safe&Comp outperforms Greedy significantly (≈ 20%) and ExtUnitigs
appreciably (≈ 13%). While the Reference-Sim dataset shows the overall domi-
nance of Safe&Comp since complex graphs are appreciable (32%), Greedy domi-
nates Safe&Comp in Catfish dataset since complex graphs are negligible (≈ 2%).
Another significant reason for the dominance of Greedy over Safe&Comp on Cat-
fish datasets is the absence of base information on nodes (see full paper [15]).
Hence, the importance of Safe&Comp algorithms increases with the increase in
complex graph instances in the dataset, and prominently when we consider in-
formation about the genetic information represented by each node. In terms of
performance, ExtUnitigs are 1.3− 1.5× slower than the fastest approach (Unit-
igs), while Safe&Comp further takes roughly 1.2 − 2.5× time than ExtUnitigs,
both requiring equivalent memory. However, Greedy requires roughly 3 − 5×
time and 1.1 − 2.2× memory than Safe&Comp. Overall, Safe&Comp performs
significantly better than Greedy, without losing a lot over the trivial algorithms.

References

1. Acosta, N.O., Mäkinen, V., Tomescu, A.I.: A safe and complete algorithm for
metagenomic assembly. Algorithms for Molecular Biology 13(1), 3:1–3:12 (2018).
https://doi.org/10.1186/s13015-018-0122-7

2. Aho, A.V., Corasick, M.J.: Efficient string matching: An aid to bibliographic
search. Commun. ACM 18(6), 333–340 (1975). https://doi.org/10.1145/360825.
360855

3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows - theory, algorithms and
applications. Prentice Hall (1993)

4. Baaijens, J.A., der Roest, B.V., Köster, J., Stougie, L., Schönhuth, A.: Full-length
de novo viral quasispecies assembly through variation graph construction. Bioin-
form. 35(24), 5086–5094 (2019). https://doi.org/10.1093/bioinformatics/btz443

5. Baaijens, J.A., Stougie, L., Schönhuth, A.: Strain-aware assembly of genomes from
mixed samples using flow variation graphs. In: Schwartz, R. (ed.) Research in
Computational Molecular Biology - 24th Annual International Conference, RE-
COMB 2020, Padua, Italy, May 10-13, 2020, Proceedings. Lecture Notes in Com-
puter Science, vol. 12074, pp. 221–222. Springer (2020). https://doi.org/10.1007/
978-3-030-45257-5_14

6. Caceres, M., Mumey, B., Husic, E., Rizzi, R., Cairo, M., Sahlin, K., Tomescu,
A.I.I.: Safety in multi-assembly via paths appearing in all path covers of a DAG.
IEEE/ACM Transactions on Computational Biology and Bioinformatics (2021)

7. Cairo, M., Medvedev, P., Acosta, N.O., Rizzi, R., Tomescu, A.I.: An Optimal
O(nm) Algorithm for Enumerating All Walks Common to All Closed Edge-

https://doi.org/10.1186/s13015-018-0122-7
https://doi.org/10.1186/s13015-018-0122-7
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1007/978-3-030-45257-5_14
https://doi.org/10.1007/978-3-030-45257-5_14
https://doi.org/10.1007/978-3-030-45257-5_14
https://doi.org/10.1007/978-3-030-45257-5_14

Safe and Comp. in Flow Decomp. for RNA Assembly 15

covering Walks of a Graph. ACM Trans. Algorithms 15(4), 48:1–48:17 (2019).
https://doi.org/10.1145/3341731

8. Cairo, M., Rizzi, R., Tomescu, A.I., Zirondelli, E.C.: Genome assembly, from prac-
tice to theory: Safe, complete and linear-time. In: Bansal, N., Merelli, E., Worrell, J.
(eds.) 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference). LIPIcs,
vol. 198, pp. 43:1–43:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

9. Cechlárová, K., Lacko, V.: Persistency in combinatorial optimization problems on
matroids. Discret. Appl. Math. 110(2-3), 121–132 (2001). https://doi.org/10.1016/
S0166-218X(00)00279-1

10. Costa, M.C.: Persistency in maximum cardinality bipartite matchings. Operations
Research Letters 15(3), 143 – 149 (1994). https://doi.org/10.1016/0167-6377(94)
90049-3

11. Ford, D.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, USA
(2010)

12. Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix, V., Guigó, R., Sammeth,
M.: Modelling and simulating generic rna-seq experiments with the flux simulator.
Nucleic acids research 40(20), 10073–10083 (2012)

13. Hartman, T., Hassidim, A., Kaplan, H., Raz, D., Segalov, M.: How to split a flow?
In: 2012 Proceedings IEEE INFOCOM. pp. 828–836. IEEE (2012)

14. Kececioglu, J.D., Myers, E.W.: Combinatorial algorithms for DNA sequence as-
sembly. Algorithmica 13(1/2), 7–51 (1995)

15. Khan, S., Kortelainen, M., Cáceres, M., Williams, L., Tomescu, A.I.:
Safety and Completeness in Flow Decompositions for RNA Assembly. CoRR
abs/2201.10372 (2022)

16. Kingsford, C., Schatz, M.C., Pop, M.: Assembly complexity of prokaryotic genomes
using short reads. BMC Bioinformatics 11(1), 21 (2010)

17. Kloster, K., Kuinke, P., O’Brien, M.P., Reidl, F., Villaamil, F.S., Sullivan, B.D.,
van der Poel, A.: A practical fpt algorithm for flow decomposition and transcript
assembly. In: 2018 Proceedings of the Twentieth Workshop on Algorithm Engi-
neering and Experiments (ALENEX). pp. 75–86. SIAM (2018)

18. Li, W.: RNASeqReadSimulator: a simple RNA-seq read simulator (2014)
19. Liu, R., Dickerson, J.: Strawberry: Fast and accurate genome-guided transcript re-

construction and quantification from rna-seq. PLoS computational biology 13(11),
e1005851 (2017)

20. Ma, C., Zheng, H., Kingsford, C.: Exact transcript quantification over splice graphs.
In: Kingsford, C., Pisanti, N. (eds.) 20th International Workshop on Algorithms in
Bioinformatics, WABI 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference).
LIPIcs, vol. 172, pp. 12:1–12:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2020). https://doi.org/10.4230/LIPIcs.WABI.2020.12

21. Ma, C., Zheng, H., Kingsford, C.: Finding ranges of optimal transcript expression
quantification in cases of non-identifiability. bioRxiv (2020). https://doi.org/10.
1101/2019.12.13.875625, to appear at RECOMB 2021

22. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press (2015). https://doi.org/10.1017/CBO9781139940023

23. Medvedev, P., Georgiou, K., Myers, G., Brudno, M.: Computability of models for
sequence assembly. In: WABI. pp. 289–301 (2007)

24. Millani, M.G., Molter, H., Niedermeier, R., Sorge, M.: Efficient algorithms for mea-
suring the funnel-likeness of dags. Journal of Combinatorial Optimization 39(1),
216–245 (2020)

https://doi.org/10.1145/3341731
https://doi.org/10.1145/3341731
https://doi.org/10.1016/S0166-218X(00)00279-1
https://doi.org/10.1016/S0166-218X(00)00279-1
https://doi.org/10.1016/S0166-218X(00)00279-1
https://doi.org/10.1016/S0166-218X(00)00279-1
https://doi.org/10.1016/0167-6377(94)90049-3
https://doi.org/10.1016/0167-6377(94)90049-3
https://doi.org/10.1016/0167-6377(94)90049-3
https://doi.org/10.1016/0167-6377(94)90049-3
https://doi.org/10.4230/LIPIcs.WABI.2020.12
https://doi.org/10.4230/LIPIcs.WABI.2020.12
https://doi.org/10.1101/2019.12.13.875625
https://doi.org/10.1101/2019.12.13.875625
https://doi.org/10.1101/2019.12.13.875625
https://doi.org/10.1101/2019.12.13.875625
https://doi.org/10.1017/CBO9781139940023
https://doi.org/10.1017/CBO9781139940023

16 S. Khan et al.

25. Nagarajan, N., Pop, M.: Parametric complexity of sequence assembly: theory
and applications to next generation sequencing. Journal of computational biology
16(7), 897–908 (2009)

26. Olsen, N., Kliewer, N., Wolbeck, L.: A study on flow decomposition methods for
scheduling of electric buses in public transport based on aggregated time–space
network models. Central European Journal of Operations Research (2020). https:
//doi.org/10.1007/s10100-020-00705-6

27. Patro, R., Duggal, G., Kingsford, C.: Salmon: accurate, versatile and ultrafast
quantification from rna-seq data using lightweight-alignment. BioRxiv p. 021592
(2015)

28. Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., Salzberg,
S.L.: Stringtie enables improved reconstruction of a transcriptome from rna-seq
reads. Nature biotechnology 33(3), 290–295 (2015)

29. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences 98(17), 9748–
9753 (2001)

30. Pieńkosz, K., Kołtyś, K.: Integral flow decomposition with minimum longest path
length. European Journal of Operational Research 247(2), 414–420 (2015)

31. Shao, M., Kingsford, C.: Accurate assembly of transcripts through phase-preserving
graph decomposition. Nature biotechnology 35(12), 1167–1169 (2017)

32. Shao, M., Kingsford, C.: Theory and a heuristic for the minimum path flow de-
composition problem. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 16(2), 658–670 (2017)

33. Srivastava, A., Malik, L., Sarkar, H., Zakeri, M., Almodaresi, F., Soneson, C., Love,
M.I., Kingsford, C., Patro, R.: Alignment and mapping methodology influence
transcript abundance estimation. Genome Biology 21(1), 1–29 (2020)

34. Tomescu, A.I., Gagie, T., Popa, A., Rizzi, R., Kuosmanen, A., Mäkinen, V.:
Explaining a weighted DAG with few paths for solving genome-guided multi-
assembly. IEEE ACM Trans. Comput. Biol. Bioinform. 12(6), 1345–1354 (2015).
https://doi.org/10.1109/TCBB.2015.2418753

35. Tomescu, A.I., Kuosmanen, A., Rizzi, R., Mäkinen, V.: A novel min-cost flow
method for estimating transcript expression with rna-seq. BMC bioinformatics
14(S5), S15 (2013)

36. Tomescu, A.I., Medvedev, P.: Safe and complete contig assembly through omnit-
igs. Journal of Computational Biology 24(6), 590–602 (2017), preliminary version
appeared in RECOMB 2016.

37. Vatinlen, B., Chauvet, F., Chrétienne, P., Mahey, P.: Simple bounds and greedy
algorithms for decomposing a flow into a minimal set of paths. European Journal
of Operational Research 185(3), 1390–1401 (2008)

38. Wang, Z., Gerstein, M., Snyder, M.: RNA-Seq: a revolutionary tool for transcrip-
tomics. Nature Reviews Genetics 10(1), 57–63 (2009)

39. Williams, L.: Reference-sim (Nov 2021). https://doi.org/10.5281/zenodo.5646910
40. Williams, L., Reynolds, G., Mumey, B.: Rna transcript assembly using inexact

flows. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). pp. 1907–1914. IEEE (2019)

41. Williams, L., Tomescu, A., Mumey, B.M., et al.: Flow decomposition with sub-
path constraints. In: 21st International Workshop on Algorithms in Bioinformatics
(WABI 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021)

42. Yu, T., Mu, Z., Fang, Z., Liu, X., Gao, X., Liu, J.: Transborrow: genome-
guided transcriptome assembly by borrowing assemblies from different assemblers.
Genome research 30(8), 1181–1190 (2020)

https://doi.org/10.1007/s10100-020-00705-6
https://doi.org/10.1007/s10100-020-00705-6
https://doi.org/10.1007/s10100-020-00705-6
https://doi.org/10.1007/s10100-020-00705-6
https://doi.org/10.1109/TCBB.2015.2418753
https://doi.org/10.1109/TCBB.2015.2418753
https://doi.org/10.5281/zenodo.5646910
https://doi.org/10.5281/zenodo.5646910

	Safety and Completeness in Flow Decompositions for RNA Assembly

