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The higher-order structure of genes and other fea-
tures of hiological sequences ean be described by
means of formal grammars. These grammars can then
be used by general-purpose parsers to deteet and to
assemble such structures by means of synlactic pat-
tern recognition. We describe a grammar and parser
for eukaryotic protein-encoding genes, which by some
measures is as effective as current connectionist and
comhinatorial algorithms in predicting gene struc-
tures for sequence datahase entries. Parameters of the
grammar rules are optimized for several different spe-
cies, and mixing experiments are performed to deter-
mine the degree of species specificity and the relative
importance of compuositional, signal-hased, and syn-
tactic components in gene prediction. = 1994 Academic

T'ress, Inc.

INTRODUCTION

Formal language theory views languages as sets of
strings over some alphabet and specifies potentially in-
finite languages with concise sets of rules called gram-
mats (Hoperoft and Ullman, 1979). Grammars are an
exceptionally well-studied methodology, familiar to all
computer scientists, for the description of complex,
higher-order structures embodied in strings of symbols.
Moreover, they can be given as input to general-pur-
pose programs called parsers capable of determining
whether a given string satisfies the ruies of the gram-
mar. Parser technology is also extensively developed
and has been applied as well to the problem of search-
ing for complex patterns specified by grammars in large
amounts of data, in a technique known as synfactic
pattern recognition (Fu, 1982).

A formidabie pattern recognition problem in biology
is the recognition of protein-encoding genes in other-
wigse uncharacterized primary sequence data. Tradi-
tionally, this has devolved to the problem of recognizing
coding sequence using a variety of statistical metrics,
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recently reviewed in Fickett and Tung {1992). These
compositional methods, used in what Staden (1984)
termed “gene search by content,” typically produce for
any sample window of sequence a measure of similar-
ity, by some criterion, to “typical” exonic sequence data,
Among the more commonly used compositional mea-
sures are Fickett's TESTCODE algorithm (Fickett, 1982),
which measures positional asymmetry or the tendency
for base compositions to vary systematically with posi-
tion within the codon, and hextuple frequencies or the
relative frequencies of occurrence of each 6-mer of
bases in coding (either in-frame or independent of
frame) versus noncoding sequences (Claverie et al.,
1990). All such methods have the disadvantage that
their accuracy invariably declines with smaller window
sizes, and for most metrics the optimum window size
is greater than the mean exon size in typical vertebrate
gene sets. Nevertheless, new systems such as GRAIL
have markediy improved upon these methods by com-
bining evidence from a number of them in a connec-
tionist architecture (Uberbacher and Mural, 1991).
Another approach to gene-finding involves what Sta-
den (1984) termed “gene search by signal,” the recogni-
tion of specific local binding sites or other cues to pro-
cesses involved in gene expression, such as splice sites.
The subtlety and degree of variation in such signals
mean that their detection is often as uncertain as the
more global compositional measures, yet progress has
also been made on this front using sophisticated statis-
tical and machine-learning techniques such as neural
networks. Weight matrices are a widely used and rela-
tively “low-tech” example of a means of detecting such
local signals (Stormo, 19590). Recently, a number of sys-
tems (including more recent versions of GRAIL) have
united compositional and signal detection techniques
in hybrid gene prediction systems, in which evidence
is combined to predict the most likely gene structure
from a stretch of primary sequence. Not only do such
gene assembly programs provide more information
than strictly compositional exon finders, but by impos-
ing additional constraints they can improve the latter’s
performance. Several such gystems have been built on
rule-based architectures (Fields and Soderlund, 1990;
Gelfand, 1990). These advances have brought into focus
the combinatorial problem of assembling and testing
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large sets of candidate exons; this has been addressed
in the GenelD system (Guigo ef al., 1992) by clustering
exons into equivalence classes, and in the GeneParser
system (Snyder and Stormo, 1993) by a novel dynamic
programming approach (see also Gelfand and Royt-
berg, 1993). These systems achieve similar levels of
performance (Snyder and Stormo, 1993).

We proposed the use of formal grammars to assemble
gene structures from primary sequence in 1988 (Searls,
1988) and since that time have worked to build a do-
main-specific parser to enable the use of grammars as
versatile yet reasonably efficient pattern recognition
tools (Searls, 1989, 1992, 1993). We have successfully
used this system, called GENLANG, for the recognition
of tRNA genes, group I introns, and a variety of other
features (Searls and Noordewier, 1991; Searls and
Dong, 1993). We now report more comprehensive ef-
forts to use the GENLANG system to recognize and pre-
dict structures of eukaryotic protein-encoding genes.

METHODS

Grammars and Parsing

The gene grammars to be described were implemented in the logic
programming language Prolog, using a powerful and extensible
grammar paradigm called definite clause grammar (DCG} (Pereira
and Warren, 1980). DCGs are directly translated by Prelog compilers
to executable code for simple recursive-descent parsers. While DCGs
offer an excellent rapid-prototyping environment and are optimized
for this form of search, a number of adaptations were made in the
course of developing the GENLANG parser, largely for the sake of
efficiency and ease of grammar development in the domain of DNA
sequence data. Thus, GENLANG grammars are augmented with many
hidden parameters and additional functionalities, and the lower lev-
els of the system are implemented in the “C” programming language.
One particularly important speedup is the use of chart parsing tech-
niques, related to dynamic programming, in which intermediate re-
sults (i.e., parse subtrees) are saved for later reuse in highly nonde-
terministic parsing; chart parsing allows an order of magnitude
speedup for the grammars described below. Details of the implemen-
tation of GENLANG can be found elsewhere (Searls and Dong, 1993;
Searls and Noordewier, 1991).

A significant feature of GENLANG grammars is the incorporation
of a notion of cost. To allow for imperfect matching, for example, with
a simple oligonucleotide sequence, a maximum cost may be imposed
on the rule when it is invoked, and up to that number of mismatches
is allowed, However, much more complicated cost models are possi-
ble, including user-defined functions, such as edit distance and
weight matrix scores (see below). Costs are promulgated up the re-
sulting parse tree and summed at each node, so that not only the
overall parse but also each subtree can have a threshold cost. This
allows for rules of varying and even context-sensitive stringency.

The overall design and cost model employed for the gene parsing
task was as follows. A set of rules designated leaf rules was chosen,
whose members referred directly to primary sequence and were ad-
judged to be the significant units of “evidence” for some signal or
compositional measure related to the presence of a gene (enumerated
in detail below). The grammar was then elaborated so that an addi-
tional set of node rules each invoked exactly two of either the leaf
rules or other node rules. [In formal terms, the core grammar was
thus reduced to Chomsky normal form, and it is known that any
context-free grammar can be so structured (Hoperoft and Ullman,
1979).] The resulting parse trees were therefore binary. Each node
rule N was responsible for combining the cost of two lower-level
rules—a left (L) and right (R} child—and passing it up to its own
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parent. For this purpose a uniform cost funection was designed based
on a single “mixing” parameter, u, as follows:

Costy = (1 — p)-Costy + p-Costg.

The parameter ; was intended to range between zero, giving full
weight to the left child and nene to the right, and one, shifting all
weight to the right child. Also associated with each node rule was a
pair of thresholds, #; and 8z, representing the maximum costs to be
allowed over the left and right subtrees, respectively. That is, when-
ever in a developing parse tree a child node applied to some span of
sequence accumulated a cost exceeding the threshold imposed by its
parent, that child node would be said to fail. At that point, the gram-
mar would backfrack or retry the child node at the next span of
sequence allowed by the grammar. A parse succeeded whenever all
subtrees could be assembled so as to satisfy all thresholds, including
some top-level thresheld applied to the tree as a whole, Even after
succeeding, the grammar could be made to backtrack to find alterna-
tive answers, and in this case the predicted structure was taken to
be the one with the minimum top-level cost.

Not surprisingly, the effectiveness of the resulting grammars was
in large part determined by the values assigned to the mixing and
threshold parameters; finding optimal values of these parameters is
thus a major concern. The total cost of any given putative gene could
be calculated directly from a single formula assembled from each of
the cost functions, and it may be imagined that results identical to
those given below could be arrived at by generating putative genes by
whatever means and applying such a formula repeatedly. However, it
is important to note that the application of thresholds at multiple
levels greatly prunes the search space and provides much finer con-
trol over the acceptable subtrees. This fact, and other procedural
aspects of the parse to be described below, permits (in fact, requires)
a less than exhaustive search of the possible gene structures to be
performed.

Compositional and Signal Measures

As noted above, a number of compositional measures of exonic
tendency have been proposed, most of which are interrelated to a
greater or lesser degree (Fickett and Tung, 1992). We have chosen
two of the best-known: in-frame hextuple frequency (Claverie et al.,
1990) and position asymmetry as measured by Fickett’s TESTCODE
algorithm (Fickett, 1982). Their use is described further below and
under Discussion.

Local signals were largely detected using weight matrices, imple-
mented in GENLANG as follows. Input to a special form of grammar
rule consists of a table F of numbers of occurrences of each base type
in B = {a, ¢, g, t} at each position 1 < { = n in a set of examples
drawn from aligned consensus sequences of length n. This is compiled
to code which evaluates a candidate sequence in a fashion optimized
for rapid parsing (Searls, 1988). The method that proved most effec-
tive with the signals described below was one that evaluates a se-
guence subarray S using a negative log likelihood funetion (Stormo,
1990), as follows:

Cost = — ¥ (log F, gy — log(max F;})).
bek

i=1

Thus, the cost is the sum of the negative logs of the individual base
position frequencies, normalized so that the most likely base in each
position contributes zero cost. For certain signals, improved perfor-
mance was achieved by taking inte account negative examples {(often
done in machine learning techniques but generally not in weight
matrices). This was accomplished by dividing the frequencies of the
positive examples by those of the negatives to produce a log likelihood
ratio.

Gene Grammars

Protein-encoding gene grammars are the most complex that we
have built and will not be given in their full detail. (Source code and
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documentation are available on request, and many aspects of the
grammar’s design have already appeared (Searls, 1988, 1992, 1993;
Searls and Noordewier, 1991).) Desecribed below is the “core” of a
new grammar designed specifically for automated optimization of
gene prediction.

Leaf rules. Leaf rules, which would be called “prelexical” in a
linguistic context and are termed “sensors” in certain other gene
prediction systems, are those that collect a variety of forms of evi-
dence for assembly by the grammar. They constitute the leaves of
the eventual parse tree and are enumerated below. Frequencies for
these features were compiled from gene sets to be described in a
later section.

1. Start Codon Consensus. A weight matrix cost for the region
extending from —6 bp to +6 bp from a putative start of translation,
with an obligatory ATG. It proved most effective to use only positive
examples, drawn frem authentic starts of translation.

2. ATG Spacing. A cost inversely proportional to the distance
from a putative start codon to the next preceding ATG in the se-
quence. For authentic start sites we observed that this distance is
greater than the mean, due to a tendency to exclude nonstart up-
stream ATGs in initial exons.

3. Upstream Words. A cost inversely proportional to the average,
for each hextuple in a region up to 200 bp upstream of a putative start
site, of the frequencies of cccurrence of those hextuples upstream of
authentic start sites. .

4. Exon Size. For an obligatory open reading frame of length L
in a putative internal exon, a cost proportional to the average exon
length divided by L. Note that this penalizes exons that are “too
short,” but not exons longer than the mean, since of course the latter
are less likely to arise by chance during parsing. Initial and final
exons are not assessed a cost, since much wider size variations are
observed in these.

5. Coding Words. For a putative coding region, a cost inversely
proportional to the in-frame hextuple score. This score is calculated
as the sum of the logarithms of the ratios of each hextuple’s frequency
of occurrence in coding versus noncoding regions, plus an offset to
ensure a positive result.

6. Position Asymmetry. For a putative coding region, a cost de-
rived from Fickett's TESTCODE algorithm (Fickett, 1982), but using
tables of probabilities and weights calculated individually for the
sets described helow,

7. Donor Consensus. A weight matrix cost for the region ex-
tending from —3 to +6 from a putative splice donor, with an obliga-
tory GT. Positive examples were confirmed donors, and negative ex-
amples were GT-containing sequences within 50 bp of confirmed
donors.

8. Donor Words. At a putative splice donor, a cost proportional
to the Coding Words cost for the in-frame portion of the region 50
bp upstream minus that for the region 50 bp downstream, plus an
offset to ensure a positive result. Such a differential is indicative of
a transition from exonic to intronic sequence.

9. Acceptor Consensus. A weight matrix cost for the region ex-
tending from —14 to +3 from a putative splice acceptor, with an
obligatory AG. Positive examples were confirmed acceptors, and neg-
ative examples were AG-containing sequences within 50 bp of con-
firmed acceptors.

10. Acceptor Words. At a putative splice acceptor, a cost propor-
tional to the Coding Words cost for the in-frame portion of the region
50 bp downstream minus that for the region 50 bp upstream, plus
an offset to ensure a positive result.

11. Exon Number. A cost proportional to the average number of
exons divided by that observed in the putative gene structure. Again,
this penalizes only genes with fewer exons than the mean, rather
than more, so this rule should be considered simply to establish
a hiag (for better or worse) toward genes with greater numbers of
exons.

12. Splice Quality. A cost equal to the average cost of all introns
in an entire putative gene, encompassing local and global measures
as mixed at the level of the intron rule (see below).

13. Coding Quality. A cost equal to the average cost of exons in
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FIG. 1. Graphical depiction of the core grammar structure,
roughly corresponding to an instantiated parse tree of a gene. Solid
lines depict rule invocations, and dashed lines indicate transmission
of costs by other means. The apparent dual parentage of the Exon
rule reflects the fact that it is invoked at different times by distinct
higher-level rules. The circular arc around Remainder indicates re-
cursion (see text).

a putative gene, encompassing local and global measures as mixed
at the level of the exon rule.

It should be emphasized that no effort was made to establish at
the outset the relative values of each of these leaf rules in gene
prediction. The costs produced by each were initially scaled to
roughly the same order of magnitude, but the mixing coefficients are
what determine the relative contribution of each sensor to the overall
cost at each level of the parse, and the goal of the training regimen
to be described below was to determine, a posteriori, locally optimal
mixing coefficients. Thus, if, for example, the bias toward larger
numbers of exons in leaf rule 11 proved to be ill-founded or poorly
formulated, then the cost contributed by this leafnode would presum-
ably be devalued by the mixing coefficient (possibly to zero) in the
training process.

Node rules.  The internal nodes of the grammar are represented
in graphical form in Fig. 1. The top-level rule Gene (analogous to
Sentence in typical natural language grammars) invokes a Transla-
tion and a Termination rule, and these in turn invoke lower-level
node rules, and so on down to the leaf rules. The Remainder rule is
recursive in that its right child is itself; this permits it to reinvoke
its left child, a rule for an Intron/Exon pair, as many times as neces-
sary. Other recursive rules used in the overall grammar, such as one
within the Exon rule that gathers codons into an open reading frame,
are not included in the core grammar depicted. Also not shown is
the “escape” from the recursion, a special rule for the final Intron/
Exon pair.

Such recursion has an interesting interpretation under the cost
model described above, For i = 0, the entire cost of Remainder is
that of the left child, Intron/Exeon; in particular, the top-level cost is
just that of the first InfronfExon pair in the gene. Af every level
of the recursion, each additional Intron/Exon is in effect treated in
isolation and is required to meet the same cost threshold, 6, . If, on
the other hand, ¢ = 1, only the cost of the right children will be
passed up, meaning (eventually) just the final Intron/Exon; again,
the intervening IntronfExon pairs will be thresholded individually
by 4. (In both cases 6y can apply only to the final Intron/Exon,
although there is an additional requirement in the former case that
it not be less than 8;.)

However, consider intermediate mixing parameter values, e.g., &
= (.5, The cost passed up at every invocation of Remainder would
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then be one-half the cost of the current Intron/Exon, plus one-fourth
the cost of the next one, and so on. In addition to the threshold 8,
on individual Intron/Exon pairs, the fy threshold will apply to all
the remaining pairs, although in a decreasingly weighted fashion.
More formally, the top-level cost of a left recursion of depth 7, encom-
passing the costs of n — 1 left children, Cost;, and that of a final
right, child, Costg, can be shown to be

n-1

Costy = (1 — ,u)-( > u‘-CostLl) + - Costpg.

i=0

This arrangement has the desirable property that the total average
cost is asymptotic in the length of the recursion; more precisely, it
can be shown by induction on n that, given constant Cost;, = Costy

= C, it will also be the case that Costy = C for any p and any n.
Thus, no special arrangements need be made to adjust thresholds
for different numbers of exons or at different depths of the recursion.

The rate at which the weight of subsequent terms decreases de-
pends on u: small p shifts the emphasis to the left children and thus
shortens the “half-life” of the costs, while larger u shifts the emphasis
to the right and levels out the contributions of all the Intron/Exon
pairs. {In all cases, the final Intron/Exon contributes greater cost,
the shorter the recursion; thus, the earlier the recursion is to termi-
nate, the better the final Intron/Exon has to be to “justify” that termi-
nation.) The value of 1 can be thought of as the effective width of a
decaying “window” that determines how many Intron/Exon pairs are
taken into account at one time by the thresholds on Remainder.

It should be noted that, unlike formal grammars, this grammar is
not constrained to invoke terminal elements strictly in the order in
which they appear on the input string. For example, it is more effi-
cient to detect the Start Codon Consensus before evaluating the Up-
stream elements of the grammar. [The theory and practice of this
aspect of GENLANG are discussed in Searls (1989, 1993)]. Moreover,
while many rules refer to primary sequence directly in the tradition
of formal grammars, they are intermized with more global, evalua-
tive rules that have a distinctly heuristic flavor. For example, the
Termination branch of the grammar in effect constitutes a “wrap-
up” evaluation of the putative gene product, in terms of the number
and quality of the entire set of exons proposed. As noted in the
enumeration of leaf rules, the Splice Quality and Coding Quality
rules make use of the costs of the individual Infron and Exon rule
invecations, respectively; however, the rules under Termination cal-
culate a uniform average as opposed to the half-life window employed
under the recursive rule. Particularly for more complex genes, it may
be important to allow for such global as well as local assessments of
exon quality.

This departure from formal grammars and the incorporation of
features such as costs give the resulting system the flavor of a hierar-
chical rule-based system such as GenelD (Guigo et al., 1992). Even
traditional linguistic techniques such as chart parsing have their
analogues in other technical domains. However, the lower levels of
the gene grammar and indeed the recognition engine itself are still
general purpose tools and have been used to find a variety of other
types of features {Searls and Dong, 1993), The logic grammar frame-
work is well-suited to rapid prototyping and inherently supports
useful features such as input management behind the scenes, param-
eter hiding, easily modified syntax and higher level language fea-
tures, and most of all an efficient backtracking search mechanism.
We feel it is also very important that the practical grammar used
here is still built upon and tied to a formally well-founded “idealized”
gene grammar (Searls, 1992), which continues to provide a solid
foundation for other ongoing research in parallelization, formal
gramimars, ete.

Gene Parsing

A single parsing run actually entails the generation and evaluation
of a large number of alternative parses, with the minimum cost parse
being selected as the final answer. The stringency of the thresholds
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in the grammar is gradually relaxed in the course of parsing. That
is, while mixing coefficients ¢ are specified by the user before parsing
begins and remain constant, the thresholds # increase during the
parse, across a range that is determined by a training set of known
sample genes.

Given such a training set, the grammar is first used to parse each
gene in such a way that only the known, authentic structure is al-
lowed. (One of the advantages of the DCG methodology is that prop-
erly written grammars may be given an instantfiated parse tree as
input, rather than producing it as cutput, so as to enforce a given
parse (Searls, 1989).) Thresholds may then be set to the maximum
costs encountered at each node for the entire training set, i.e., 50 as
to allow just barely every known gene and element of a gene; this is
called the 100% seipoint for the grammar thresholds as a group. To
vary thresholds from these trained values, the user does not change
individual thresholds but rather the setpoint for the grammar as a
whole. For example, a setpoint of 120% would uniformly increase
every threshold to 1.2 times the maximum value encountered in the
training set.

However, setpoints less than 100% are handled differently. First,
thresholds for elements occurring only once in a parse tree, such as
start codons, are not allowed to decrease from the 100% value, but
remain fixed at that level even for lower setpoints. For elements
occurring more than once per gene, such as exons, the complete list of
such costs encountered in the training set is examined. The setpoint
determines what percentage of those costs are included, e.g., the
threshold for exons is chosen so that the setpoint percentage of
known excns from the training set would succeed.

This process is repeated for a series of setpoints, typically 80, 90,
95, 98, 99, 100, 105, 110, 120, and 130%, to determine a range of
threshold values tailored to the training set. This process is called
threshold calibration on the given set of sample genes. Note that a
threshold for the Gene rule is also determined, although this rule is
not invoked by other rules but only at the top level by the parser.

After threshold calibration, and with each mixing parameter
having been set by a procedure to be described, the parse can proceed.
For each setpoint level in order of increasing percentage {i.e., decreas-
ing stringency), the top level rule is invoked for a given input—
generally an entire GenBank entry sequence. The Prolog-based
parser imnplements a top-down, backtracking search according to the
grammar, and wherever a complete candidate gene is found com-
pares it to the GenBank annotations and records various measures
of the “quality” of the result (see below). The parser immediately
backtracks to produce as many alternative results as possible, until
either a specified maximum number of parses is reached (typicaily
100) or a time limit is exceeded (typically 2 min on a SPARCstation
10). At this point, the next higher percentage setpoint is tried, except
that the top-level threshold is now decreased to the maximum cost
already encountered at the higher stringency. When either all set-
points have been tried or a timeout has occurred at some setpoint
with no parses having been produced, the parse terminates, and in
batch mode the parser moves on to the next sequence in the database.

This protocol proved effective over a wide range of genes, with
minimum-cost parses for different genes distributed among all set-
points. The 80% level parsing generally proceeded quickly due to the
higher stringency and where parses were found established a lower
top-level threshoeld that in turn sped up the subsequent lower strin-
gency (90%) parsing, and so on. This coarse-grained branch-and-
bound technique, as well as the chart parsing described above, was
necessary to produce large numbers of alternative structures under
the inherently costly parsing methodology, although the number ex-
amined is still small compared to other combinatorial algorithms
that perform exhaustive searches (Guigo et al., 1992; Snyder and
Storme, 1993).

Training and Test Sets

Our philosophy in selecting and normalizing training sets of se-
quence database entries was to do this in as automated a fashion as
practicable, in part so as to help drive out human bias, but primarily
to permit the uniform and rapid treatment of multiple species {and
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eventually other subdivisions of the data}. Consequently, rather than
using hand-picked training sets, GENLANG scripts were written to
select various data sets directly from GenBank. The current version
of GENLANG uses a DCG of GenBank entry syntax to scan the flat
file versions of the database, performing selections on and extracting
various header fields of interest. In addition to human entries, mouse
and drosophila entries were selected (genus ‘Mus’ and ‘Drosophila,’
respectively), and a much broader collection of dicot plants (class
‘Magnoliopsida’).

The sets of entries extracted for each of these phylogenetic groups
are as follows:

A. ¢DNA gene set. This set contained entries selected as being
of type “m-RNA” and having the substring ‘complete ¢ds’ in their
description field. The coding sequence extracted from these entries
can thus be expected to be full length. These sequences were used
to compile statistics for start codon weight matrices, coding position
asymmetry coefficients, and in-frame coding hextuple frequency
tables.

B. Genomic gene set. This set consisted of entries of type ‘ds-
DNA,” of length greater than 1000, and with a CDS annotation listing
more than one coding region in a single transeript, i.e., containing
at least one intron. These complete and partial genomic sequences
were used to compile splice junction weight matrices, noncoding posi-
tion asymmetry coefficients, and noncoding hextuple frequency
tables.

C. Complete gene set. 'This set, essentially a subset of the genomic
gene set, consisted of entries of type ‘ds-DNA’ having the substring
‘complete cds’ in their description field. These complete genomic DNA
sequences were used to assess the average number of exons per gene
and average internal exon length and to compile hextuple frequency
tables for regions up to 200 bp upstream of the start codons (since
only in ‘complete eds’ entries could the beginning of the CDS list be
trusted to be the actual start codon). This region can be expected to
contain hextuple entries including known proximal promoter ele-
ments such as TATA boxes; this was confirmed by direct examination
of the frequency tables,

D. Parsing gene set. To serve as a pool for training to establish
u and 6 values and for testing the gene grammar, 48 entries from
the complete gene set were selected at random, with the following
constraints.

» Only sequences less than 20,000 bp were selected. As a practi-
cal matter, this permitted a more uniform depth of parsing for each
gene in the training set within the time limits set, and in any case
few current entries exceed this length. Parsing of longer genes will
be addressed below.

¢ Sequences with unknown bases were not selected. Some sen-
sors were not designed to deal with unknown bases, and while many
other algorithms substitute bases at random in such cases, we found
that simply skipping them eliminated only a small percentage of
complete gene entries and greatly simplified the interpretation.

+ Entries exhibiting multiple gene products, for example due to
known alternative splicing, were eliminated. This was accomplished
by selecting only entries with a single CDS feature. Like longer gene
entries, this class is growing in size and containg some of the more
“interesting” gene structures, but the evaluation of performance (see
below) is problematic in these cases. Parsing of alternatively spliced
genes will be discussed below,

These 48 entries were removed from the genomic as well as the
complete gene set, in both cases before the statistics indicated above
were compiled. Moreover, members of the ¢cDNA gene set with BLAST
scores exceeding 1200 against any member of the parsing gene set
were removed; this served to exclude ¢cDNAs of the same gene as
well as closely related genes in a family. The same criterion was
applied to ensure that no two closely related genes were included in
the parsing gene set itself.

E. Training/test sets. The parsing gene set was divided ran-
domly (except as noted below) into sets of 16 for threefold cross-
validation during training of the gene grammar. That is, three train-
ing runs were performed, each time using 32 entries for training and
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TABLE 1

Effective Sizes of Data Sets Employed
(Number of Entries)

Gene set Stage Human Mouse Drosophila Dicot
cDNA Initial selection 1663 813 208 235
Less parsing set 1598 784 203 210
After clustering 1028 557 168 158
Genomic Initial selection 325 179 336 153
Less parsing set 2797 131 288 1056
After clustering 187 87 103 77
Complete Initial selection 223 115 146 122
Less parsing set 175 67 98 74
After clustering 130 55 35 50

leaving out 16 entries for testing, with different nonoverlapping sets
of 16 omitted in each run.

In addition to removing the parsing gene set from the cDNA, geno-
mic, and complete gene sets, the latter were each normalized to
give approximately equal consideration to every closely related gene
family, as opposed to each individual gene. For example, so as not
to give undue weight to the large number of globin gene entries
in sequence databases, it is desirable to cluster these into a single
representative class, as in Guigo et al. (1992). This was carried out
by the simple expedient of counting the number of BLAST scores
greater than 1200 for each entry compared against each of the other
entries in the set and assigning a weight to that entry equal to the
inverse of the number of “hits.” Then, in compiling frequency tables,
weight matrices, ete., each sequence contributed its weight, instead
of unity, to the counts. It can he seen that every member of a clesely
related family of genes would thus contribute a weight equal to one
over the size of the family, so that the entire family would possess
unit weight. By the same token, unique genes would also have unit
weight. Unlike the case of hand-picked representative training sets,
each member of a cluster thus has a *vote’ in the overall consensus.
We find that this technique used with a threshold of 1200 produces
clusters that, upon subjective examination, contain nearly all obvi-
ously related entries without including a large number of unexpected
associations or more distant evolutionary relationships. Note that
equal weighting for each gene family actually may not be the best
policy for de nove discovery of genes, which might be expected to
occur in proportion to the current distribution of gene classes in the
databases. However, for purposes of validation of the technique, it
is important to minimize “crosstalk™ between the training and test
sets, such as might occur if the latter happened to contain genes
bearing more remote similarities to large families that were heavily
represented in the training set.

The sizes of the training sets and results of normalization are
summarized in Table 1. (The sharp reductions observed upon cluster-
ing drosophila genomic and complete gene sets are due to the very
large number of aleohol dehydrogenase genes represented.) The com-
plete parsing sets may be obtained by anonymous FTP from cbil.-
humgen.upenn.edu, in the directory /pub/genlang/testsets.

Performance Assessment

A variety of means have been used to assess the quality of gene
structure predictions, which we classify into the following groups:

A. Correct genes. This method simply counts the number of genes
correctly predicted in the entirety of their coding sequence and ex-
presses this as a fraction of the total number of genes attempted.
This is the most stringent test, and no existing software has produced
very high scores.

B. Correct exons. This method counts the number of exons cor-
rectly predicted from end to end and again gives the fraction of the
total. It may also be useful to count “half right” exons or more explic-
itly to determine the number of splice sites of either type correctly
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predicted, as well as start and stop codons; note that this is different
from assessing these individual signal sensors in isolation, since they
are here required to be correct in some wider context.

C. Exon overlap. This method determines the degree to which
the set of predicted exons overlaps the authentic exons. This is done
by counting the number of bases correctly predicted as exonic (i.e,
true positives, TP), falsely predicted (FP), correctly excluded (TN),
and falsely excluded (FN), and then applying a variety of statistical
metrics, such as sensitivity and specificity.

We measure exon overlap using the following definitions:

Sensitvity = g Specificity = 5
Correlation_ (TP-TN — FP-FN)
Coefficient TP + FPXFP + TNXTP + FNXIN + FN)

Note that definitions vary among authors. In particular, our formula
for specificity is that used by Snyder and Stormo (1993); it is called
‘Sen2’ by Guigo et ¢l. (1992) and appears elsewhere in the literature
as positive predictive value (Lathrop et al., 1993). (A different formula
is often used for specificity, which counts true negatives, but these
numbers are generally too large in this application to be informative;
in nearly every case this formula produced values that varied only
between 0.95 and 0.98.) There appears to be a consensus that Mat-
thews’ correlation coefficient (CC) (Matthews, 1975) is the best over-
all indicator of overlap, providing as it does a single scalar metric of
performance. For all sequence entries of a given get, individual and
average values for each of these metrics for the minimum cost parse
were compiled. For purposes of comparison, two different methods
of aggregating results were used, to be deseribed under Results.

Training Regimen

As noted above, training of grammar parameters proceeded by way
of a threefold cross-validation using training sets of 32 entries and
test sets of 16. The following regimen was arrived at after testing a
variety of “hill-climbing” schemes for adjusting parameters to a local
optimum.

Training began with all mixing parameters set to g = 0.5; thresh-
old parameters were arrived at by thresholding on the training set
itself at each stage. (The same thresholds were used subsequently
for the test sets.) Bach training epoch consisted of a perturbation
step followed by a combination step. For the perturbation step, a
series of parses of the entire training set were run in which py for
each node N in the grammar was changed both up and down hy some
value A, with the parameters on all other nodes being held constant.
Of all the results, the changes producing the five highest average
CCs were collected for the combination step. In this step, all possible
combinations of the five changes were tried together, and the combi-
nation producing the highest average CC was selected as the outcome
of the training epoch. These changes, with all other node parameters
left at their previous values, constituted the baseline for the next
epoch. A total of three such epochs were run, with values of A equal
to 0.3, 0.2, and 0.1, respectively.

This ad hoc training regimen, while not formally justified on proba-
bilistic or other theoretical grounds, was adjudged the most effective
of a number of alternatives tried. The alternation of perturbation
and combination steps was found to be particularly important, as
an earlier attempt that used only perturbation revealed that some
favorable changes in distinct mixing coefficients were “self-cancel-
ling” in combination. The amount of time required by the parsing
methodology is limiting in a number of respects, including the sizes
of the training and test sets, the degree of cross-validation, and most
importantly, the number of different vectors of parameters that could
be independently tested. However, as will be seen in the next section,
training appeared to progress rapidly and effectively even under the
limitations of the architecture.
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¥1G. 2. Training of the gene grammar on two of the four data
sets (mouse and dicot not shown). Connected points are median val-
ues, while error bars indicate the remaining values, for the three
cross-validated test sets. Circles give values for correlation (i.e., exon
overlap) using the scales to the left, while squares indicate exon
fraction correct (in percentage) using the scales to the right. Filled
circles and dashed lines indicate training set results, while open
figures and solid lines give test set results. The horizontal axes indi-
cate the progression of the training through three epochs, corre-
sponding to perturbations of 0.3, 0.2, and 0.1, respectively, from the
starting mixing coefficients of 0.5.

RESULTS

Grammar Training

Some results of grammar training are illustrated in
Fig. 2. In all cases, training sets showed sharp improve-
ments after the initial epoch and generally much less
improvement thereafter. Human test sets started at an
unexpectedly high level in terms of both correlation
coefficient and exon fraction correct, showed improve-
ment in the initial epoch, but then declined with fur-
ther training; this suggested that the grammar was
overtraining, or adapting to the specific training sets
in ways that did not generalize well to the test sets.
The mouse test sets (not shown) started at a somewhat
lower level of performance and demonstrated contin-
ued increasing average performance through three
epochs, eventually achieving correlation coefficients
gimilar to the human peak. Drosophila and dicot test
sets improved through two epochs, with drosophila sets
starting at the highest levels overall. Both of these sets
achieved higher average performance than did those
from vertebrates. We believe that this is primarily be-
cause to a first approximation vertebrates have short
exons and long introns, while the opposite is the case
for drosophila and dicots; for this reason global signals
are stronger in the latter.

Figure 3 gives some indication of the nature of the
grammars at the end of training. The parse trees shown
for representative data sets are depicted in such a way
that the width of each pair of arcs from parent nodes to
children reflects the relative cost contribution of those
children to the parent’s overall cost, as determined by
the mixing coefficient at the parent using input costs
from the children at their 95% threshold values; these
threshold values are chosen as being representative of
critical cutoffs during the parses, but essentially the
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FIEG. 3. Nature of the grammars resulting from training on the data sets of Fig. 2. The trees represent grammars as in Fig. 1, and the
arcs indicate status after the third epoch. Width of each are indicates relative weight accorded to that arc by the trained mixing coefficient,
and gray-scale intensity indicates “criticality” of the mixing coefficient to the final result, as defined in the text.

same results are observed when average input costs
are used. Also, the gray-scale intensity of the arcs is
an indication of the “criticality” of the mixing coefficient
of the parent node, as determined by the deviation ob-
served in the correlation coefficient with the perturba-
tion of that 4 in the final training epoch. That is, the
correlation coefficients for 4 + 0.1 and g — 0.1 are
compared with that for » at its penultimate trained
value, by taking the square root of the sum of the
squares of their differences from the correlation coeffi-
cient for u.

The combination of width and intensity of these arcs
gives some indication of the flow of costs up the parse
tree. Some extreme differences in cost weighting be-
tween children, such as the width disparities below
the Initial Exon, Upstream, and Exon nodes, can be
somewhat discounted in importance because of the gen-
erally faint criticalities of the arcs; this indicates little
sensitivity to change in p at these nodes. It is important
to note, in addition, that small weight or criticality for
an arc does not indicate that the child node is unimpor-
tant to the result, but rather that the cost of that child
need not be evaluated in combination with other costs
at a higher level or in the overall cost. Such a node
may constitute strong independent evidence that dis-
criminates well based on its own local threshold, such
that there is simply no great advantage to passing its
cost further up the parse tree.

Values of these parameters are given as the means
for the three training sets, The resulting grammars
demonstrated some degree of intraspecies variation in
the final mixing coefficients among the three cross-vali-
dated training runs, perhaps greater than might be
expected given the relative uniformity of the results of
Fig. 2 (see Discussion). Several other striking differ-
ences in relative weights of mixing, such as between
Consensus and Words components of splice Donor and
Acceptor rules, are however of only moderate criticality

in all but a few instances, and these criticalities also
tend to be inconsistent among training runs.

Among the more consistent observations, however,
was the greater weight put on the Translation cost in
human and mouse at the top level, as compared to
the Termination cost, which was emphasized more in
drosophila and dicot. Reeall that the Transiation rule
1s an “on-line” procedural rule that assesses the devel-
oping cost of the gene on the fly, while the Termination
rule igs an “off-line” post hoc evaluation of an overall
gene; the results observed suggest that both compo-
nents are indeed important in combination, and in
varying ratios, for the effective evaluation of the overall
Gene. The Termination node itself also shows fairly
consistent criticality, suggesting that the bias toward
greater Exon Number built into the left child is effective
in balance with an overall indication of Exon Quality.

Within the Translation subtree, the vertebrate data-
sets showed a consistent weighting and criticality at
the recursive Remainder node, indicating that, for spe-
cies in which this subtree is given greatest weight, the
effective window in which Intron/Exon pairs are evalu-
ated, as described under Materials and Methods, is an
important parameter. Beneath the Intron/Exon node,
the Intron rule is given somewhat greater weight than
the Exon rule, and the criticality suggests that in the
animal datasets it is fruitful to threshold them in com-
bination at this particular ratio.

Every effort was made to ensure that test sets were
properly separated from training sets, as noted under
Methods. Not only the removal of training sequences
showing a high similarity score with test set sequences,
but also the clustering of highly similar entries in the
training sets should have helped to avoid any undue
influences. In addition, we believe that this is the first
cross-validated study in the arena of gene prediction,
To ensure that more subtle similarities within the final
training sets were not affecting test results, we looked
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for any correlation between performance and the cumu-
lative BLAST scores between individual test sequences
and the training set as a whole. We found no suggestion
of any such correlation, measuring performance either
by exon overlap or by exon fraction correct (data not
shown).

Comparative Studies

These overall results appear to be similar to those
achieved with a variety of other special-purpose gene
assembly algorithms, even though the GENLANG parser
is a general-purpose pattern matching tool not espe-
cially adapted to exhaustive combinatorial search. Di-
rect comparisons are difficult, for a number of reasons:

s Test sets are not well standardized, and even com-
parisons on test sets that have appeared previcusly
must generally use slight variations because of faults
identified in entries, changes in the underlying data-
bases, or individual limits or requirements of the sys-
tems under test.

¢+ Different metrics and standards are employed by
different workers. We have described some of the differ-
ences in performance measures, but other authors use
completely different means of evaluation. Moreover, it
is difficult to adjust for differences between authors in
separation of training and test sets, normalization of
training sets to adjust for clusters of similar genes, and
cross-validation.

* Systems are generally distinct by virtue of their
overall architectures, their selections of sensors, their
means of combining evidence, and their approach to
the combinatorics of exon assembly, so it is difficult
to attribute performance differences to any particular
factor.

» (Gene prediction is a very active field of research,
and systems are constantly being improved, so that
any comparative results are likely to have been “leap-
frogged” by the time they reach press.

With these caveats in mind, we nevertheless com-
pared GENLANG's performance with several other pro-
grams in current use. Table 2 shows the results of such
a comparison with a recent version of GRAIL (XGRAIL,
October 1993, obtained by anonymous FTP from
arthur.epm.ornl.gov). Statistics from individual entries
are averaged in two ways: by gene, as in Guigo et al.
{1992), and by base (i.e., by summing results on a nucle-
otide by nucleotide basis), as in Snyder and Stormo
{1993). Thus, for example, for a test set of n sequence
entries the formula for sensitivity by gene would be
(Zi-1 (TP, /(TP; + FN;)))n, while that for sensitivity by
base would be (B, TP;)/Z!_, (TP, + FN;}). We use the
former method in presenting our other data, because
it gives a better indication of the success rate over each
attempted sequence entry and avoids lending extra
weight to genes with longer, “easier” exons. The results
in Table 2 illustrate why the distinction is important:
in terms of overall correlation the two programs are
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TABLE 2
Comparison with GRAIL Using GENLANG Test Sets®

By gene By base
Test
Program set Gene Exon CC Sn Sp CC Sm  Sp
GENLaNG 1 0.06 049 076 086 0.78 0.74 084 0.72
2 0.19 050 079 085 0.82 077 083 0.79
3 0.13 052 0795 0.79 0.82 0.74 077 0.81
Mean 013 050 0.77 0.83 081 0.95 0.81 0.77
GRAIL 1 0.00 040 072 073 0.83 0.78 0.78 0.85
2 0.19 047 081 081 0.8 0.85 085 091
3 0.37 062 081 096 094 0.85 0.78 0.97
Mearn 0.1% 050 0.78 0.77 088 0.83 0.80 091

2 Data shown are Gene and Exon fractions correct, and statistics
for correlation (CC), sensitivity (Sn), and specificity (Sp) calculated
by gene or by base for human test sets, as described in the text.

comparable when measured gene by gene, but GRAIL
performs better when averaged by base. We believe
that this is because GRAIL does slightly better on
genes with larger numbers of exons, and GENLANG is
better at recognizing exons less than 100 bases in
length (data not shown); both of these factors would
tend to favor GRAIL when performance is measured
base by base. (A more recent version of GRAIL achieves
improved performance on smaller exons in part by
allowing for assessment of coding measures over vari-
able window sizes (E. Uberbacher, pers. commun.,
1994), which is inherent in the GENLANG system.)

Table 2 indicates that, as a rule, GRAIL performs
with higher specificity, while GENLANG is relatively
more sensitive. Reports of GRAIL results generally em-
phasize specificity as a measure of performance (Uber-
bacher and Mural, 1991), probably reflecting an orien-
tation toward the use of GRAIL to predict putative
exons for further laboratory investigation, a situation
in which false positives can prove very costly. Figure
4 shows a direct comparisen of the two systems for
each gene attempted; the degree of scatter between the
individual results of the two programs indicaies that
to some extent they have disjoint strengths and weak-
nesses and that in general it may be advisable to per-
form multiple analyses of novel sequence data.

We also analyzed the performance of GENLANG rela-
tive to two ather special-purpose gene prediction pro-
grams, GenelD (Guigo et al., 1992) and GeneParser
(Snyder and Stormo, 1993}, based on data from these
original papers using the GenelD test set. To do this
we retrained the GENLANG grammar using 35 entries
from our training/test sets that did not appear in this
new test set (also removing from our larger sets all
entries similar to any member of the new test set, by
the criteria used previously). Based on the training re-
sults above, only a single training epoch was used, and
it was again confirmed that this was sufficient to
achieve peak performance. Table 3 compares these re-
sults with original data (recalculated as required for
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FIG. 4. Performance of GRAIL v¢ GENLANG on individual entries
from the GENLANG human test sets. Each circle represents a single
entry, with correlation scores from the two programs indicated by
positions on the respective axes. Thus, peints above and to the left
of the dashed line represent entries for which GENLANG’s correlation
score exceeded that of GRAIL. The radius of each circle is propor-
tional to the number of exons in the gene, ranging from 3 to 14.

direct comnparison) from Guigo et al. {1992) and Snyder
and Stormo (1993).

Once again, GENLANG demonstrates generally
greater sensitivity and lower specificity than the other
programs and comparable overall correlation scores.
The GenelD test set contained slightly less than half
human sequences, the remainder being mostly rodent.
Since GENLANG showed lower correlation using this
test set than it did with its cross-validation test sets,
the human subset (consisting of 12 sequences) was ex-
tracted and tested separately. Indeed, GENLANG’s per-
formance improved in all respects and was more consis-
tent with the human-only study above. At the same
time, results with GenelD itself (whose training set
was of mixed species composition, similar to the test
set) did not show such improvement.

Because the grammars were trained to maximize cor-
relation, which essentially represents a tradeoff be-

TABLE 3
Comparison with GenelD and GeneParser
Using GenelD Test Sets®
By gene By base
Test

Program set Gene Exon CC Sn Sp C€C Sn  Sp
GENLANG Total 007 047 069 077 073 072 078 0.74
Human 017 052 076 082 077 079 086 0.79

GenelD Total 0.11 044 087 069 084 067 065 078
Human 017 046 066 072 080 069 070 080

GeneParser Total — 049 — — — 069 068 078
GENLANG Total G004 026 060 055 083 058 046 085
(Sp trained) Human 0.08 037 069 061 0.89 065 055 087

% The total test set was the mixed vertebrate set used by Guigo ef
al. (1992} but excluding the HAMRPS14A entry (as in Snyder and
Stormo, 1993), for a total of 27 entries; the human test set consisted
of the 12 human sequences in the total test set. Data were as in Table
2 and were taken from Snyder and Stormo (1993) for GeneParser and
from Guigo et al. (1992) for Genelld, in the latter case hy recalculation
from the original entries for the human subset and for the statistics
by base.
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FIG. 5. Application of grammars to heterologous phylogenetic

groups. Row and column labels indicate phylegenetic groups of train-
ing and test sets employed: H, human; R, mouse; D, Drosophila; and
P, dicot plants. The first two matrices give resultzs for correlation
and exon fraction, while the last matrix shows correlation and exon
fraction distances, as defined in the text. Mixing coefficients and test
sets used were selected from the previeus cross-validation experi-
ment based on the results that gave the highest combined perfor-
mance on training and test sets and then applied consistently across
other species.

tween sensitivity and specificity, there would presum-
ably be some degree of freedom on this axis. We also
tried training GENLANG grammars using maximization
of specificity as the selection criterion. Table 3 shows
that this change did indeed result in higher values for
specificity, but at the expense of both sensitivity and
correlation, and not to the specificity levels achieved
by GRAIL in the data of Table 2. Training for maximi-
zation of exon fraction produced results identical to
those seen with correlation training (data not shown).

Phviogenetic Specificity

The data of Table 3 suggest that performance may
have been enhanced by training and testing in a spe-
cies-specific manner. To test this we tried the individ-
ual grammars on each heterologous phylogenetic
group, with results shown in Fig. 5.

These results indicate that there are indeed differ-
ences among the grammars, although the differences
between the human and the mouse grammars are
slight and not likely to be statistically significant,
based on the variation observed in the cross-validation.
For example, the human-trained grammar gave a cor-
relation of 0.75 on a human {est set, 0.72 on mouse, but
only 0.27 on dicot plants. Similarly, the dicot-trained
grammar produced a correlation of only 0.21 on the
human test set. Performances for exon fraction showed
similar patterns, and with a few exceptions the matri-
ces are roughly symmetric. To summarize cross-species
differences we calculated an ad hoc distance between
each pair of phylogenetic groups, defined for correlation
as (CCL]_'Csz) - (Ccl’g 'CCz,l), where Ccl'g indicates
the individual correlation between training set 1 and
test set 2, ete. {and similarly for exon fraction).

In an attempt to discover the reasons for the appar-
ent phylogenetic differences in the grammars, we per-
formed mixing experiments in which various composi-
tional and signal measures, as well as grammar param-
eters, were combined from and applied to different
species. Thus, for example, the human-trained gram-
mar from Fig. 5, which demonstrated a correlation of
0.75 and exon fraction of 0.51, was tested with Drosoph-
ila compositional measures (hextuple tables and posi-
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tion asymmetry frequencies) substituted for the human
ones; this reduced the performance metrics to 0.47 and
0.26, respectively. When the human grammar was used
with Drosophila local signals (weight matrices for
splice junctions, ete.), the effect was less deleterious,
with performance reduced to 0.70 correlation and 0.37
exon fraction. Similar results were obtained when Dro-
sophila mixing coefficients, governing the combination
of evidence, were substituted in the human grammar:
0.66 and 0.35, respectively. These mixing experiments
were tried for all combinations of species (data not
shown) with essentially analogous results, although
varying in overall degree. To summarize, compositional
measures were the most important factors in perfor-
mance, but there were indications that all aspects of
the grammars contribute in some degree.

DISCUSSION

In general the parser was surprisingly robust in the
face of varying vectors of mixing coefficients. Direct
examination of the trained coefficients suggested that
only a few key changes were required in any species to
achieve most of the results observed, and most individ-
ual perturbations produced a neutral or only slightly
detrimental effect. In fact, few generalizations were
possible concerning the optimization process. In each
species the three training sets did not always appear
to be converging on the same vector of coefficients, even
though final results were comparable, suggesting that
in this system the surface of optimal vectors may be
relatively shallow and “corrugated” with many local
optima. Indeed, when training was performed on one
species starting with coefficients that had been devel-
oped by training on another species, the final vector of
coefficients had characteristics of both of the species’
final vectors under the usual training, and the final
performance was somewhat degraded (data not
shown),

There is no guarantee that we have arrived at global
or near global optima under the ad hoc training regi-
men used, and the observations above suggest that
there may be many suboptimal local cost minima to
which it is susceptible. Possibly a more effective train-
ing methodology would result in even better perfor-
mance, but the length of time required to test each
change by parsing limits the amount of search that
can be accomplished with the present technique. (The
results of this paper required on the order of 3 CPU-
months of computer time.) We are currently investigat-
ing means by which this process may be sped up to
allow more extensive search, perhaps by analyzing
parse trees to allow credit assignment at a more de-
tailed level (short of complete parses) for backpropoga-
tion, as well as with alternative search methodologies
such as genetic algorithms. Any improvement in effi-
ciency would allow us to increase the number of train-
ing examples, which at 32 is not large compared to the
number of parameters (14 mixing coefficients), al-
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though it should be noted that there were typically
100—-200 exons in the training sets for the critical inter-
nal nodes.

On the other hand, the overtraining observed and
the variation among test sets in final mixing coefficient
vectors suggest that additional training may produce
diminishing returns. This is supported also by the ob-
servation that, during training, improvements in one
subset of genes would typically produce offsetting
losses in another subset, even after several epochs.
This suggests the possibility of disjunctive grammars
that essentially subclassify genes, by “branching” the
training process. In effect, something like this is al-
ready being carried out by way of the sliding threshold
values, which on some genes produce many alterna-
tives at the stringent earlier thresholids, and on others
produce no parses at all until the thresholds are greatly
relaxed. Others have observed a “feast or famine” effect
whereby sequence entries vary tremendously in the
numbers of potential genes they produce (ranging con-
tinuously over five orders of magnitude in Guigo et al.,
1992).

It would of course be most interesting if such disjunc-
tive grammars actually recognized functional differ-
ences in the “types” of genes that they recognized, for
instance, if they happened to classify genes by time or
tissue of expression, perhaps reflecting subtle differ-
ences in the gene expression machinery. The apparent
species specificities that we have identified may in fact
reflect nothing more than selection biases in the types
of genes most commonly isolated from various species
and entered in the database. In many ways this would
actually be a more interesting eventuality, and we are
actively investigating this possibility. It should also be
emphasized that the training and test results depend
upon the integrity of the database annotations of cod-
ing sequence, which is certainly in doubt in many cases;
indeed, it must be said that GENLANG is not trained to
recognize authentic genes but rather GenBank feature
tables.

It is apparent that a general-purpose parser such as
GENLANG can, with appropriately designed grammars,
produce results comparable to special-purpose gene
prediction algorithms. While the latter are specifically
designed and optimized to exhaustively search the com-
binatorial space of exon assemblies, the parser uses a
grammar formalism that serves equally well for other
higher-order structures such as tRNA genes, and more-
over examines only the first 100 complete parses pro-
duced. Compare this with GenelD, which typically
evaluates tens of thousands of gene models, each of
which includes multiple “equivalent” exon clusters
{Guigo et al., 1992), or with GeneParser, which uses a
dynamic programming matrix to examine literally ev-
ery possible assignment of intron and exon boundaries
in a sequence (Snyder and Stormo, 1993). The smaller
number of parses examined by GENLANG is in fact ne-
cessitated by the well-known time penalty paid by gen-
eral-purpose parsers as compared to fully customized
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code, although in fact GENLANG, which averaged 2.5
3 min total per sequence on a SPARCstation 10, is less
than an order of magnitude slower than the version of
GRAIL that we tested on the same platform. (More
recently, we have ported the system to a native code
compiler and achieved a twofold speedup, while collab-
orators have developed parallel versions that promise
even better performance.)

Performance comparisons are problematic in this do-
main, for reasons enumerated above, and also because
these programs were designed for slightly different
problems; for example, GenelD was meant to take pre-
mRNA as input, and GeneParser was intended only
to recognize internal exons, although both have been
generalized to deal with genes embedded in intergenic
sequences as well. It is possible that these other pro-
grams may prove superior ¢n sequences longer than
20,000 bases (the limit imposed in the present study),
and in particular on genes with very large numbers of
exons, since GENLANG depends upon backtracking left-
to-right search. However, we feel that by taking advan-
tage of the chart parser and designing grammar rules
specialized for scanning lengthy sequences (Searls and
Dong, 1993), we will be able to adapt GENLANG to deal
with such complex genes effectively, although perhaps
not at the level of the intrinsically bottom-up ap-
proaches of ether programs.

GENLANG could return multiple genes in a sequence
with some simple extensions, and in fact we have dem-
onstrated this previously with multiple parses in a glo-
bin gene region (Searls and Noordewier, 1991). Partial
genes are more problematic, since the grammar repre-
sents a model of an entire gene, but grammars that
gpan only subtrees are easily written. Pseudogenes or
disease gene alleles with mutations that affect transla-
tion would also not be recognized {(at least in their en-
tirety) by the grammar described here, but again we
have shown that similar grammars can be “relaxed” to
allow for the detection of untranslatable messages,
such as are produced with certain splicing defects
{Searls and Noordewier, 1991); all that is required is
that the forms of mutations be meodeled with the gram-
mar as well, by methods that we have described else-
where (Searls, 1989, 1993).

The inherent nondeterminism of the GENLANG
parser may prove to be an advantage in addressing
alternative splicing. In several alternatively spliced
genes that we have examined, the known gene products
all ranked high in the pargse ordering, particularly
when the mode of alternative splicing fit the back-
tracking scheme well (as in the three alternative final
exons of drosophila aldolase). One might even argue
that the left-to-right parsing paradigm in some way
represents a better model of processive aspects of gene
expression, known and perhaps unknown. There may
be evidence of this in the fact that, of the up to 100
parses returned for each sequence, the minimal cost
parse was in fact found relatively early in general: on
the 26th parse for the vertebrate species on average,
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and on only the 12th parse for the other groups. For
Drosophila in particular, 42% of entries in the test sets
produced the authentic gene as the first parse returned,
although for only 31% was this also the minimum cost
parse. (For all species, the best parses returned were
significantly better than the minimum cost parses, e.g.,
for human data the best parses would have produced
a correlation coefficient of 0.85 and an exon fraction of
0.59, indicating that there is room for improvement
in the evaluation of gene structures generated by the
grammar.)

In any case, we feel that the grammar representation
constitutes an excellent foundation for further work in
this domain, Not only are grammar rules intrinsically
modular, hierarchical, and well-suited to rapid proto-
typing, but they have proven to be a suitable frame-
work for embedding other algorithms as sensors and
for managing the combination of evidence from them.
We note that the sensors used thus far are not among
the most sophisticated currently under study, which
include compositional measures drawn from signal pro-
cessing and information theory (reviewed in Fickett
and Tung, 1992} and signal measures based on connec-
tionist and classification techniques from machine
learning (e.g., Brunak et al., 1991; Kudo et al., 1992).
The ability to apply such advanced sensors in a “plug
and test” mode in a variety of grammar architectures
and evidence combination schemes shouid allow them
to be used to the best effect. Moreover, we believe that
we have yet to take full advantage of the capacity of
grammars to represent the syntactic complexity and
diversity that may be expected in this domain. As infor-
mation about adjacent regulatory regions accumuiates,
and as models of splicing become more elaborate, the
flexibility of grammars should increasingly come to the

‘fore in representing and predicting gene structure,

The GENLANG parser used for this work is avaiiable
in the form of Quintus Prolog source code, and the sys-
tem has recently been ported to the less expensive
SICStus environment as well. Grammars described
are also freely available, and runtime versions are
currently under development. Contact D.B.S. at the
address above or by electronic mail at dsearls@chil.-
humgen.upenn.edu.
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