
Overview of C
Chapter 2

Problem Solving & Program Design in C

Eighth Edition
Jeri R. Hanly & Elliot B. Koffman

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

1

Chapter Objectives

• To become familiar with the general form of a
C program and the basic elements in a
program

• To appreciate the importance of writing
comments in a program

• To understand the use of data types and the
differences between the data types int,
double, and char

• To know how to declare variables

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

2

Chapter Objectives

• To understand how to write assignment
statements to change the value of variables

• To learn how C evaluates arithmetic
expressions and how to write them in C

• To learn how to read data values into a
program and to display results

• To understand how to write format strings for
data entry and display

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

3

Chapter Objectives

• To learn how to use redirection to enable the
use of files for input/output

• To understand the differences between syntax
errors, run-time errors, and logic errors, and
how to avoid them and to correct them

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

4

C

• A high-level programming language
• Developed in 1972 by Dennis Ritchie at AT&T

Bell Labs
• Designed as the language to write the Unix

operating system
• Resembles everyday English
• Very popular

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

5

Figure 1.11
Entering,

Translating,
and Running
a High-Level

Language Program

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

6

Language Elements

• preprocessor
– a system program that modifies a C program prior

to its compilation

• library
– a collection of useful functions and symbols that

may be accessed by a program
– each library has a standard header file whose

name ends with the symbols “.h”

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

7

stdio.h

Language Elements

• preprocessor directive
– a C program line beginning with # that provides an

instruction to the preprocessor

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

8

#include <stdio.h>

#define KMS_PER_MILE 1.609

Language Elements

• constant macro
– a name that is replaced by a particular constant

value before the program is sent to the compiler

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

9

#define KMS_PER_MILE 1.609

kms = KMS_PER_MILE * miles;

constant
constant macro

Language Elements

• comment
– text beginning with /* and ending with */ that

provides supplementary information but is
ignored by the preprocessor and compiler

– for single-line comments, can use // (introduced in
C99)

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

10

/* Get the distance in miles */
// Get the distance in miles

Figure 2.1 C Language Elements in
Miles-to-Kilometers Conversion Program

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

11

Function main

• Every C program has a main function.

• These lines mark the beginning of the main
function where program execution begins.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

12

int main (void)

Function main

• declarations
– the part of a program that tells the compiler the

names of memory cells in a program

• executable statements
– program lines that are converted to machine

language instructions and executed by the
computer

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

13

Variable Declarations

• variable
– a name associated with a memory cell whose

value can change

• variable declarations
– statements that communicate to the compiler the

names of variables in the program and the kind of
information stored in each variable

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

14

Variable Declarations

• C requires you to declare every variable used
in a program.

• A variable declaration begins with an identifier
that tells the C compiler the type of data store
in a particular variable.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

15

double miles;

int hours;

Data Types

• int
– a whole number
– 435

• double
– a real number with an integral part and a fractional

part separated by a decimal point
– 3.14159

• char
– an individual character value
– enclosed in single quotes
– ‘A’, ‘z’, ‘2’, ‘9’, ‘*’, ‘!’

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

16

Executable Statements

• Follow the declarations in a function.
• Used to write or code the algorithm and its

refinements.
• Are translated into machine language by the

compiler.
• The computer executes the machine language

version.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

17

Executable Statements

• assignment statement
– an instruction that stores a value of a

computational result in a variable

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

18

kms = KMS_PER_MILE * miles;

Executable Statements

• Assignment is not the same as an algebraic
equation.

• The expression to the right of the assignment
operator is first evaluated.

• Then the variable on the left side of the
assignment operator is assigned the value of that
expression.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

19

sum = sum + item;

The printf Function

• Displays a line of program output.
• Useful for seeing the results of a program

execution.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

20

printf(“That equals %f kilometers. \n”, kms);

The printf Function

• function argument
– enclosed in parentheses following the function

name
– provides information needed by the function

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

21

printf(“That equals %f kilometers. \n”, kms);

function name

The printf Function

• format string
– in a call to printf, a string of characters enclosed

in quotes, which specifies the form of the output
line

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

22

printf(“That equals %f kilometers. \n”, kms);

The printf Function

• print list
– in a call to printf, the variables or expressions whose

values are displayed
• placeholder
– a symbol beginning with % in a format string that

indicates where to display the output value

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

23

printf(“That equals %f kilometers. \n”, kms);

• field width
– the number of columns used to display a value

• No. of decimal places
• When formatting doubles, you may indicate

the total field width needed and the number
of decimal places desired.

Formatting Numbers
in Program Output

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

24

printf(“Your result equals %5.1f kilometers. \n”, kms);

Let’s write a C program

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

25

That stores an int, double, and char
variable, and prints them all out.

Placeholders in format string

Placeholder Variable
Type

Function Use

%c char printf/scanf
%d int printf/scanf
%f double printf
%lf double scanf

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

26

The scanf Function

• Copies data from the standard input device
(usually the keyboard) into a variable.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

27

scanf(“%lf”, &miles);
scanf(“%c%c%c”, &letter_1, &letter_2, &letter_3);

• Must pass address of variable to store using
the addressof operator (&)

The return Statement

• Last line in the main function.
• Transfers control from your program to the

operating system.
• The value 0 indicates that your program

executed without an error.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

28

return (0);

Arithmetic Operators

Arithmetic
Operator

Meaning Example

+ addition 5 + 2 is 7
5.0 + 2.0 is 7.0

– subtraction 5 – 2 is 3
5.0 – 2.0 is 3.0

* multiplication 5 * 2 is 10
5.0 * 2.0 is 10.0

/ division 5.0 / 2.0 is 2.5
5 / 2 is 2

% remainder 5 % 2 is 1
© 2016 Pearson Education, Inc., Hoboken,

NJ. All rights reserved.
29

Type casting

– converting an expression to a different type by
writing the desired type in parentheses in front of
the expression

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

30

int x = 5;
double y = (double) x;

Rules for Evaluating Expressions
• Parentheses rule
– all expression must be evaluated separately
– nested parentheses evaluated from the inside out
– innermost expression evaluated first

• Operator precedence rule
– unary +, - first (setting sign)
– *, /, % next
– binary +, - last

• Note prefix and postfix increment/decrement!
– ++a and --a are executed before value is used
– a++ and a-- are executed after value is used

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

31

Rules for Evaluating Expressions

• Right Associativity
– Unary operators in the same subexpression and at

the same precedence level are evaluated right to
left.

• Left Associativity
– Binary operators in the same subexpression and at

the same precedence lever are evaluated left to
right.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

32

Figure 2.9
Evaluation Tree for

area = PI * radius * radius;

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

33

Figure 2.10
Step-by-Step Expression Evaluation

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

34

Figure 2.11
Evaluation Tree and Evaluation for v =

(p2 - p1) / (t2 - t1);

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

35

Figure 2.12
Evaluation Tree and Evaluation for z -

(a + b / 2) + w * -y

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

36

Common Programming Errors

• debugging
– removing errors from a program

• syntax error
– a violation of the C grammar rules
– detected during program translation (compilation)

• run-time error
– an attempt to perform an invalid operation
– detected during program execution

• logic errors
– an error caused by following an incorrect algorithm

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

37

Figure 2.17

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

38

A Program with a Run-Time Error

Figure 2.19

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

39

A Program That Produces Incorrect Results Due to & Omission

Wrap Up

• Every C program has preprocessor directives
and a main function.

• The main function contains variable
declarations and executable statements.

• C’s data types enable the compiler to
determine how to store a value in memory
and what operations can be performed on
that value.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

40

