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Chapter Objectives

• To become familiar with the general form of a 
C program and the basic elements in a 
program

• To appreciate the importance of writing 
comments in a program

• To understand the use of data types and the 
differences between the data types int, 
double, and char

• To know how to declare variables
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Chapter Objectives

• To understand how to write assignment 
statements to change the value of variables

• To learn how C evaluates arithmetic 
expressions and how to write them in C

• To learn how to read data values into a 
program and to display results

• To understand how to write format strings for 
data entry and display
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Chapter Objectives

• To learn how to use redirection to enable the 
use of files for input/output

• To understand the differences between syntax 
errors, run-time errors, and logic errors, and 
how to avoid them and to correct them
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C

• A high-level programming language
• Developed in 1972 by Dennis Ritchie at AT&T 

Bell Labs
• Designed as the language to write the Unix 

operating system
• Resembles everyday English
• Very popular
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Figure 1.11
Entering, 

Translating, 
and Running 
a High-Level 

Language Program
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Language Elements

• preprocessor
– a system program that modifies a C program prior 

to its compilation

• library
– a collection of useful functions and symbols that 

may be accessed by a program
– each library has a standard header file whose 

name ends with the symbols “.h”
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stdio.h



Language Elements

• preprocessor directive
– a C program line beginning with # that provides an 

instruction to the preprocessor
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#include  <stdio.h> 

#define  KMS_PER_MILE  1.609



Language Elements

• constant macro
– a name that is replaced by a particular constant 

value before the program is sent to the compiler

© 2016 Pearson Education, Inc., Hoboken, 
NJ.  All rights reserved.

9

#define  KMS_PER_MILE  1.609

kms =  KMS_PER_MILE  *  miles;

constant
constant macro



Language Elements

• comment
– text beginning with /* and ending with */ that 

provides supplementary information but is 
ignored by the preprocessor and compiler

– for single-line comments, can use // (introduced in 
C99)
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/*  Get the distance in miles  */
// Get the distance in miles



Figure 2.1  C Language Elements in 
Miles-to-Kilometers Conversion Program
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Function main

• Every C program has a main function.

• These lines mark the beginning of the main 
function where program execution begins.
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int main (void)



Function main

• declarations
– the part of a program that tells the compiler the 

names of memory cells in a program

• executable statements
– program lines that are converted to machine 

language instructions and executed by the 
computer
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Variable Declarations

• variable
– a name associated with a memory cell whose 

value can change

• variable declarations
– statements that communicate to the compiler the 

names of variables in the program and the kind of 
information stored in each variable
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Variable Declarations

• C requires you to declare every variable used 
in a program.

• A variable declaration begins with an identifier 
that tells the C compiler the type of data store 
in a particular variable.
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double  miles;

int hours;



Data Types

• int
– a whole number
– 435

• double
– a real number with an integral part and a fractional 

part separated by a decimal point
– 3.14159

• char
– an individual character value
– enclosed in single quotes
– ‘A’, ‘z’, ‘2’, ‘9’, ‘*’, ‘!’
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Executable Statements

• Follow the declarations in a function.
• Used to write or code the algorithm and its 

refinements.
• Are translated into machine language by the 

compiler.
• The computer executes the machine language 

version.
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Executable Statements

• assignment statement
– an instruction that stores a value of a 

computational result in a variable

© 2016 Pearson Education, Inc., Hoboken, 
NJ.  All rights reserved.

18

kms =  KMS_PER_MILE  *  miles;



Executable Statements

• Assignment is not the same as an algebraic 
equation.

• The expression to the right of the assignment 
operator is first evaluated.

• Then the variable on the left side of the 
assignment operator is assigned the value of that 
expression.
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sum  =  sum  +  item;



The printf Function

• Displays a line of program output.
• Useful for seeing the results of a program 

execution.
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printf(“That equals %f kilometers. \n”, kms);



The printf Function

• function argument
– enclosed in parentheses following the function 

name
– provides information needed by the function
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printf(“That equals %f kilometers. \n”, kms);

function name



The printf Function

• format string
– in a call to printf, a string of characters enclosed  

in quotes, which specifies the form of the output 
line
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printf(“That equals %f kilometers. \n”, kms);



The printf Function

• print list
– in a call to printf, the variables or expressions whose 

values are displayed
• placeholder
– a symbol beginning with % in a format string that 

indicates where to display the output value
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printf(“That equals %f kilometers. \n”, kms);



• field width
– the number of columns used to display a value

• No. of decimal places
• When formatting doubles, you may indicate 

the total field width needed and the number 
of decimal places desired.

Formatting Numbers 
in Program Output
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printf(“Your result equals %5.1f kilometers. \n”, kms);



Let’s write a C program
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That stores an int, double, and char 
variable, and prints them all out.



Placeholders in format string

Placeholder Variable
Type

Function Use

%c char printf/scanf
%d int printf/scanf
%f double printf
%lf double scanf
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The scanf Function

• Copies data from the standard input device 
(usually the keyboard) into a variable.
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scanf(“%lf”, &miles);
scanf(“%c%c%c”, &letter_1, &letter_2, &letter_3);

• Must pass address of variable to store using 
the addressof operator (&)



The return Statement

• Last line in the main function.
• Transfers control from your program to the 

operating system.
• The value 0 indicates that your program 

executed without an error.
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return (0);



Arithmetic Operators

Arithmetic 
Operator

Meaning Example

+ addition 5 + 2 is 7
5.0 + 2.0 is 7.0

– subtraction 5 – 2 is 3
5.0 – 2.0 is 3.0

* multiplication 5 * 2 is 10
5.0 * 2.0 is 10.0

/ division 5.0 / 2.0 is 2.5
5 / 2 is 2

% remainder 5 % 2 is 1
© 2016 Pearson Education, Inc., Hoboken, 
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Type casting

– converting an expression to a different type by 
writing the desired type in parentheses in front of 
the expression
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int x = 5;
double y = (double) x;



Rules for Evaluating Expressions
• Parentheses rule
– all expression must be evaluated separately
– nested parentheses evaluated from the inside out
– innermost expression evaluated first

• Operator precedence rule
– unary  +, - first (setting sign)
– *, /, %  next
– binary +, - last

• Note prefix and postfix increment/decrement!
– ++a and --a are executed before value is used
– a++ and a-- are executed after value is used
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Rules for Evaluating Expressions

• Right Associativity
– Unary operators in the same subexpression and at 

the same precedence level are evaluated right to 
left.

• Left Associativity
– Binary operators in the same subexpression and at 

the same precedence lever are evaluated left to 
right.
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Figure 2.9
Evaluation Tree for 

area = PI * radius  *  radius;
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Figure 2.10
Step-by-Step Expression Evaluation
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Figure 2.11
Evaluation Tree and Evaluation for v = 

(p2 - p1) / (t2 - t1);
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Figure 2.12
Evaluation Tree and Evaluation for z -

(a + b / 2) + w * -y
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Common Programming Errors

• debugging
– removing errors from a program

• syntax error
– a violation of the C grammar rules
– detected during program translation (compilation)

• run-time error
– an attempt to perform an invalid operation
– detected during program execution

• logic errors
– an error caused by following an incorrect algorithm
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Figure 2.17
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A Program with a Run-Time Error



Figure 2.19
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A Program That Produces Incorrect Results Due to & Omission



Wrap Up

• Every C program has preprocessor directives 
and a main function.

• The main function contains variable 
declarations and executable statements.

• C’s data types enable the compiler to 
determine how to store a value in memory 
and what operations can be performed on 
that value.
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