
Top-Down Design with Functions
Chapter 3

Problem Solving & Program Design in C

Eighth Edition
Jeri R. Hanly & Elliot B. Koffman

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

1

Chapter Objectives

• To learn about functions and how to use them to
write programs with separate modules

• To understand the capabilities of some standard
functions in C

• To understand how control flows between
function main and other functions

• To learn how to pass information to functions
using input arguments

• To learn how to return a value from a function

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

2

Top-Down Design

• top-down design
– a problem solving method
– first, break a problem up into its major

subproblems
– solve the subproblems to derive the solution to

the original problem

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

3

Figure 3.9
House and Stick Figure

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

4

Figure 3.10
Structure Chart for Drawing a Stick Figure

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

5

Functions Call Statement
(Function Without Arguments)

• Syntax
fname();

• Example:
draw_circle();

• Interpretation
– the function fname is called
– after fname has finished execution, the program

statement that follows the function call will be
executed

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

6

Figure 3.11

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

7

Function Prototypes and Main Function for Stick Figure

Function Prototype
(Function Without Arguments)

• Syntax
ftype fname(void);

• Example:
void draw_circle(void);

• Interpretation
– the identifier fname is declared to be the name of a

function
– the identifier ftype specifies the data type of the

function result

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

8

Figure 3.12
Function draw_circle

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

9

Function Definitions
(Function Without Arguments)

• Syntax
ftype
fname(void)
{

local declarations
executable statements

}

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

10

Figure 3.13
Function draw_triangle

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

11

Advantages of Using Function
Subprograms

• procedural abstraction
– a programming technique in which a main

function consists of function calls and each
function is implemented separately

• reuse of function subprograms
– functions can be executed more than once in a

program

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

12

Figure 3.15
Flow of Control Between the main Function and a

Function Subprogram

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

13

Functions with Input Arguments

• input argument
– arguments used to pass information into a

function subprogram

• output argument
– arguments used to return results to the calling

function

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

14

Figure 3.18
Function with Input Arguments and One Result

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

15

Functions with Multiple Arguments
Argument List Correspondence

• The number of actual arguments used in a call
to a function must be the same as the number
of formal parameters listed in the function
prototype.

• Each actual argument must be of a data type
that can be assigned to the corresponding
format parameter with no unexpected loss of
information.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

16

Functions with Multiple Arguments
Argument List Correspondence

• The order of arguments in the lists determines
correspondence.
– The first actual argument corresponds to the first

formal parameter.
– The second actual argument corresponds to the

second form parameter.
– And so on…

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

17

Library Functions

• code reuse
– reusing program fragments that have already

been written and tested

• C standard libraries
– many predefined functions can be found here

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

18

stdio.h
math.h

Note: must use –lm flag to compile when using math library
For example, gcc –o exe –Wall my_c_program.c -lm

Figure 3.6
Function sqrt as a “Black Box”

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

19

C Math Library Functions

• Examples
– abs(x)
– ceil(x)
– log(x)
– sin(x)
– sqrt(x)

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

20

Figure 3.23
Function scale

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

21

Wrap Up

• Code reuse is good.
• When possible, develop your solution from

existing information.
• Use C’s library functions to simplify

mathematical computations.
• You can write functions with none, one, or

multiple input arguments.
• Functions can only return one value.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

22

