
Arrays
Chapter 7

Problem Solving & Program Design in C

Eighth Edition
Jeri R. Hanly & Elliot B. Koffman

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

1

Chapter Objectives

• To learn how to declare and use arrays for
storing collections of values of the same type

• To understand how to use a subscript to
reference the individual values in an array

• To learn how to process the elements of an
array in sequential order using loops

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

2

Chapter Objectives

• To understand how to pass individual array
elements and entire arrays through function
arguments

• To learn a method for searching an array
• To learn a method for sorting an array
• To learn how to use multidimensional arrays for

storing tables of data
• To understand the concept of parallel arrays
• To learn how to declare and use your own data

types

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

3

Basic Terminology

• data structure
– a composite of related data items stored under

the same name

• array
– a collection of data items of the same type

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

4

Declaring and Referencing Arrays

• array element
– a data item that is part of an array

• subscripted variable
– a variable followed by a subscript in brackets,

designating an array element
• array subscript
– a value or expression enclosed in brackets after

the array name, specifying which array element to
access

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

5

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

6

Array Initialization

int prime_lt_100[] = {2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97}

char vowels[] = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’, ‘y’}

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

7

Using for Loops for Sequential Access

for (i = 0; i < SIZE; ++i)
square[i] = i * i;

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

8

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

9

Array Subscripts
• Syntax:

aname [subscript]
• Examples:

x[3]
x[i + 1]

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

10

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

11

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

12

What’s at x[5]?

Partially Filled Arrays

• A program may need to process many lists of
similar data but the lists may not all be the
same length.

• In order to reuse an array for processing more
than one data set, you can declare an array
large enough to hold the largest data set
anticipated.

• Then your program should keep track of how
many array elements are actually in use.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

13

Multidimensional Arrays

• multidimensional array
type arr_name[dim1val][dim2val]
tictac[3][3]

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

14

Using Array Elements as
Function Arguments

scanf(“%lf”, &x[i]);

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

15

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

16

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

17

Array Arguments

• We can write functions that have arrays as
arguments.

• Such functions can manipulate some, or all, of
the elements corresponding to an actual array
argument.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

18

Variable scope

• Part of a program where a variable is
accessible

• Lifetime of a variable

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

19

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

20

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

21

func2() {
printf(“%d\n”, x);

}
func1() {

int x = 1;
func2();

}
int main(void) {

char letter=’c’
func1();

}

Memory

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

22

func2() {
printf(“%d\n”, x);

}
func1() {

int x = 1;
func2();

}
int main(void) {

char letter=’c’
func1();

}

Memory

main

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

23

func2() {
printf(“%d\n”, x);

}
func1() {

int x = 1;
func2();

}
int main(void) {

char letter=’c’
func1();

}

Memory
main

letter: c

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

24

func2() {
printf(“%d\n”, x);

}
func1() {

int x = 1;
func2();

}
int main(void) {

char letter=’c’
func1();

}

Memory
main

letter: c

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

25

func2() {
printf(“%d\n”, x);

}
func1() {

int x = 1;
func2();

}
int main(void) {

char letter=’c’
func1();

}

Memory
main

letter: c

func1

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

26

func2() {
printf(“%d\n”, x);

}
func1() {

int x = 1;
func2();

}
int main(void) {

char letter=’c’
func1();

}

Memory
main

letter: c
func1

x: 1

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

27

func2() {
printf(“%d\n”, x);

}
func1() {

int x = 1;
func2();

}
int main(void) {

char letter=’c’
func1();

}

Memory
main

letter: c
func1

x: 1

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

28

func2() {
printf(“%d\n”, x);

}
func1() {

int x = 1;
func2();

}
int main(void) {

char letter=’c’
func1();

}

Memory
main

letter: c
func1

x: 1

func2

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

29

func2() {
printf(“%d\n”, x);

}
func1() {

int x = 1;
func2();

}
int main(void) {

char letter=’c’
func1();

}

Memory
main

letter: c
func1

x: 1

func2

out of scope!

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

30

void fill_array(
int list[],
int n,
int in_value) {

int i;
for (i = 0;

i < n; ++i) {
list[i] = in_value;

}
}
int main(void) {

int arr[10];
fill_array(arr, 5, 1);

}

Memory

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

31

void fill_array(
int list[],
int n,
int in_value) {

int i;
for (i = 0;

i < n; ++i) {
list[i] = in_value;

}
}
int main(void) {

int arr[10];
fill_array(arr, 5, 1);

}

Memory
main

arr:

What happens when we
run our executable file?

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

32

void fill_array(
int list[],
int n,
int in_value) {

int i;
for (i = 0;

i < n; ++i) {
list[i] = in_value;

}
}
int main(void) {

int arr[10];
fill_array(arr, 5, 1);

}

Memory
main

arr:

fill_array
list:
n: 5
in_value: 1

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

33

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

34

Arrays as Input Arguments

• The qualifier const allows the compiler to
mark as an error any attempt to change an
array element within the function.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

35

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

36

Returning an Array Result

• In C, it is not legal for a function’s return type
to be an array.

• You need to use an output parameter to send
your array back to the calling module.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

37

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

38

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

39

Array Search
1. Assume the target has not been found.
2. Start with the initial array element.
3. repeat while the target is not found and there

are more array elements
4. if the current element matches the target

5. Set a flag to indicate that the target has been found
else
6. Advance to the next array element.

7. if the target was found
8. Return the target index as the search result
else
9. Return -1 as the search result.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

40

Selection Sort

1. for each value of fill from 0 to n-2
2. Find index_of_min, the index of the smallest

element in the unsorted subarray list[fill]
through list[n-1]

3. if fill is not the position of the smallest element
(index_of_min)

4. Exchange the smallest element with the one at
position fill.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

41

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

42

Wrap Up

• A data structure is a grouping of related data
items in memory.

• An array is a data structure used to store a
collection of data items of the same type.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

43

