
1

Binary

• Computers represent everything as bits
• Recall: a byte is 8 bits
• Int: 4 bytes (32 bits)
• What’s the largest int we can represent?

2^32 - 1

(unsigned)

2

Binary

• Computers represent everything as bits
• Recall: a byte is 8 bits
• Int: 4 bytes (32 bits)
• What’s the largest int we can represent?

2^32 - 1

(unsigned)

3

Binary

• Computers represent everything as bits
• Recall: a byte is 8 bits
• Int: 4 bytes (32 bits)
• What’s the largest int we can represent?

2^32 - 1

(unsigned)

4

Hexadecimal (base 16)

• Binary takes up a lot of space
• Hexadecimal takes few digits but can easily be

converted to binary (and vice versa)
– Hex uses digits 0-9 and a-f
– 1 hex digit = 4 bits

• 0000 0000 0000 0001 1101 0011 0101 1011
• 1d35b

5

In C

• Format ints
– %d for decimal
– %b for binary
– %x for hex

• Assign ints
– 0b for binary (ex: 0b11011 is 27)
– 0x for hex (ex: 0x83fa9 is 540585)

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

6

Bitwise Operators

• You know logical operators…&&,||,!
• We will now learn &,|,~,^,<<,>>
• These operate at the bit level

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

7

&

8

a b a & b
1 1 1
1 0 0
0 1 0
0 0 0

|

9

a b a | b
1 1 1
1 0 1
0 1 1
0 0 0

^

10

a b a ^ b
1 1 0
1 0 1
0 1 1
0 0 0

^

11

a ~a
1 0
0 1

Operators on multiple bits

12

13

Bitmasks

• We often want to manipulate or isolate
specific bits from a collection

• A bitmask is a bit pattern that achieves this
• We can use and/or create bitmasks using

bitwise operators

14

Example: CSCI courses

• Array of ints vs. storing bits

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

15

Example: CSCI courses

• Array of ints vs. storing bits
• Bitmasks
– Setting bits to 1 with |
– Setting bits to 0 with &
– Computing union and intersection
– ”Masking off” unwanted bits

• But how do we mask an arbitrary position?

16

<< and >>

• x << k shifts x left by k

00110111 << 2 results in 11011100
01100011 << 4 results in 00110000
10010101 << 4 results in 01010000

• x >> k shifts x right by k
• Careful with unsigned ints for >>

17

18

