Structure and Union Types
Chapter 10

Problem Solving & Program Design in C

Eighth Edition
Jeri R. Hanly & Elliot B. Koffman

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

Chapter Objectives

To learn how to declare a struct data type which
consists of several data fields, each with its own
name and data type

To understand how to use a struct to store data
for a structured object or record

To learn how to use dot notation to process
individual fields of a structured object

To learn how to use structs as function
parameters and to return function results

To understand the relationship between parallel
arrays and arrays of structured objects

User-Defined Structure Types

* record

— a collection of information about one data object

 structure type

— a data type for a record composed of multiple
components

* hierarchical structure

— a structure containing components that are
structures

User-Defined Structure Types

Name: Jupiter

Diameter: 142,800 km
Moons: 16

Orbit time: 11.9 years
Rotation time: 9.925 hours

fdefine STRSIZ 10

typedef struct {
char name[STRSIZ];

double diameter; /* equatorial diameter in km

int moons; /* number of moons

double orbit_time, /* years to orbit sun once
rotation_time; /* hours to complete one

revolution on axis

*/
*/
*/

*/

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

User-Defined Structure Types

Another syntax:

struct Planet {
char name[70];
double diameter;
int moons;
double orbit_time,
rotation_time;
5
// in a function
struct Planet p1, p2;

User-Defined Structure Types

Name: Jupiter
Diameter: 142,800 km

Moons: 16 | will always use this syntax
Orbit time: 11.9 years

Rotation time: 9.925 hours

fdefine STRSIZ 10

typedef struct {
char name[STRSIZ];

double diameter; /* equatorial diameter in km */
int moons; /* number of moons * /
double orbit time, /* years to orbit sun once */
rotation_ time; /* hours to complete one
revolution on axis * /
} planet_t;

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

Individual Components of a
Structured Data Object

* direct component selection operator

— a period placed between a structure type variable
and a component name to create a reference to
the component

planet_t p1;
pl.moons = 10;
printf(“p1 has %d moons\n”, p1.moons);

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

strcpy (current planet.name, "Jupiter");
current planet.diameter = 142800;
current planet.moons = 16;

current planet.orbit time = 11.9;
current planet.rotation time = 9.925;

Variable current planet, a structure of type planet t

.name Jupiterxr\o??
.diameter 142800.0

.moons 16

.orbit time 11.9

.rotation time 9.925

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

Structure Data Type as Input and
Output Parameters

 When a structured variable is passed as an
input argument to a function, all of its
component values are copied into the
components of the function’s corresponding
formal parameter.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

Structure Data Type as Input and
Output Parameters

* When such a variable is used as an output
argument, the address-of operator must be
applied in the same way that we would pass
output arguments of the standard types char,
int, and double.

T N e i — Y
= el

FIGURE 10.2 Function with a Structured Input Parameter

OO NONAEWN A

/ *
* Displays with labels all components of a planet_t structure
* /
void
print planet(planet t pl) /* input - one planet structure */
{
printf("%$s\n", pl.name);
printf(" Equatorial diameter: %.0f km\n", pl.diameter);
printf(" Number of moons: %d\n", pl.moons);
printf(" Time to complete one orbit of the sun: %.2f years\n",
pl.orbit_time);
printf(" Time to complete one rotation on axis: %.4f hours\n",
pl.rotation_time);

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

11

10.
11.
14
13.
14.
1

FIGURE 10.3 Function Comparing Two Structured Values for Equality

OO NGO AEWN=A

#include <string.h>

/ *
* Determines whether or not the components of planet 1 and planet 2 match
* /
int
planet equal(planet t planet 1, /* input - planets to */
planet t planet 2) /* compare */
{
(continued)
FIGURE 10.3 (continued)
return (strcmp(planet_l.name, planet_2.name) == 0 &&
planet_l.diameter == planet_ 2.diameter &&
planet_l.moons == planet_2.moons &&
planet_l.orbit_time == planet_2.orbit_time &&
planet_l.rotation_time == planet_2.rotation_time);
}
© 2016 Pearson Education, Inc., Hoboken, 12

NJ. All rights reserved.

Structure Data Type as Input and
Output Parameters

* indirect component selection operator

— the character sequence -> placed between a
pointer variable and a component name creates a
reference that follows the pointer to a structure
and selects the component

FIGURE 10.4 Function with a Structured Output Argument

/*

* Fills a type planet_t structure with input data. Integer returned as
* function result is success/failure/EOF indicator.

* 1 => successful input of one planet

* 0 => error encountered

EOF => insufficient data before end of file

* In case of error or EOF, value of type planet_t output argument is

*

* undefined.

*/
int
scan_planet(planet_t *plnp) /* output - address of planet_t structure
to £ill */
{
int result;
result = scanf("%¥s%1£f3d%l1£f%1f", (*plnp).name,
&(*plnp).diameter,
&(*plnp).moons,
&(*plnp).orbit_time,
&(*plnp).rotation_time);
if (result == 5)
result = 1;
else if (result != EOF)
result = 0;
return (result);
}

NJ. All rights reserved.

14

FIGURE 10.5
, Data area of Data area of
Data Areas of main function main function scan planet
and scan_planet
During Execution ctuxvent: planet olnp
of status =
scan _planet v
(¤t N
- E t 0
planet); .name ar \
result
.diameter 12713.5 -
Lmoons 1
.orbit_time 1.0
.rotation_time 24.0
status
?
© 2016 Pearson Education, Inc., Hoboken, 15

NJ. All rights reserved.

TABLE 10.2 Step-by-Step Analysis of Reference &(*plnp).diameter

Reference Type Value

plnp planet_t * address of structure that main
refers to as current_planet

*plnp planet t structure that main refers to as
current planet

(*plnp).diameter double 12713.5

&(*plnp).diameter double * address of colored component

of structure that main refers to as
current planet

© 2016 Pearson Education, Inc., Hoboken, 16
NJ. All rights reserved.

Functions Whose Result Values are
Structured

e A function that computes a structured result
can be modeled on a function computing a
simple result.

* Alocal variable of the structure type can be
allocated, fill with the desired data, and
returned as the function result.

Functions Whose Result Values are
Structured

e The function does not return the address of
the structure as it would with an array result.

e Rather, it returns the values of all
components.

TABLE 10.1 Precedence and Associativity of Operators Seen So Far
Precedence Symbols Operator Names Associativity
highest aljl] £(¢...) . Subscripting, function calls, direct left
component selection
++ -- Postfix increment and decrement left
++ —-= ! Prefix increment and decrement, right
-+ & * logical not, unary negation and
plus, address of, indirection
(type name) Casts right
* /0% Multiplicative operators (multiplica- left
tion, division, remainder)
+ - Binary additive operators left
(addition and subtraction)
< > <= >= Relational operators left
== |= Equality/inequality operators left
&& Logical and left
| | Logical or left
\J
lowest = += -= Assignment operators right
%= /= &=

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

19

P i (i G Y
ils W=

FIGURE 10.6 Function get_planet Returning a Structured Result Type

0 NG U s W=

/ *
* Gets and returns a planet_t structure
* /
planet t
get planet(void)
{
planet_t planet;
scanf ("%$s%1£f%d%1f%1f", planet.name,
&planet.diameter,
&planet.moons,
&planet.orbit time,
&planet.rotation time);
return (planet);
}

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

20

N =b mh =h wh wh wh wh wb wmh wmh
PO NOUREWN2D

FIGURE 10.7 Function to Compute an Updated Time Value

e B B

/ *
* Computes a new time represented as a time_t structure
* and based on time of day and elapsed seconds.

* /
time_t
new time(time_ t time of day, /* input - time to be
updated */
int elapsed_secs) /* input - seconds since last update */
{
int new_hr, new_min, new_sec;
new_sec = time_of_day.second + elapsed_secs;
time_of day.second = new_sec % 60;
new min = time_of day.minute + new_sec / 60;
time_of day.minute = new_min % 60;
new_hr = time_of day.hour + new_min / 60;
time_of day.hour = new_hr % 24;
return (time_of_day);
}
© 2016 Pearson Education, Inc., Hoboken, 21

NJ. All rights reserved.

Problem Solving with Structure Types

e abstract data type (ADT

— a data type combined with a set of basic
operations

FIGURE 10.9 0

Data *‘\7

planet_t and Basic
1 Dera ‘ | ons

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

22

Header files

#include<stdio.h>
versus
#include'class.h"

Angle brackets versus quotes tells compiler
where to look for the file

