
Repetition and Loop Statements
Chapter 5

Problem Solving & Program Design in C

Eighth Edition
Jeri R. Hanly & Elliot B. Koffman

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

1

while Statement Syntax
while (loop repetition condition)

statement;

/* display N asterisks. */
count_star = 0
while (count_star < N) {

printf(“*”);
count_star = count_star + 1;

}

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

2

Increment and Decrement Operators

• counter = counter + 1
count += 1
counter++

• counter = counter - 1
count -= 1
counter--

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

3

Compound assignment

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

4

Can do these too:
+=
-=
*=
/=
%=

Operator Definition

+ addition
- subtraction

* multiplication

/ division
% remainder

Increment and Decrement Operators

• side effect
– a change in the value of a variable as a result of

carrying out an operation

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

5

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

6

The for Statement Syntax
for (initialization expression;

loop repetition condition;
update expression)

statement;

/* Display N asterisks. */
for (count_star = 0;

count_star < N;
count_star += 1)

printf(“*”);

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

7

scanf return

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

8

• We can use the function scanf without using what it
returns

scanf(“%d”, &num);

• We can use the return value
– Number of successfully matched and assigned items (note

that this can be fewer than the number input)
– If end of file is reached, EOF

status = scanf(“%d”, &num);

do-while Statement

• For conditions where we know that a loop
must execute at least one time

1. Get a data value
2. If data value isn’t in the acceptable range, go

back to step 1.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

9

do-while Syntax
do

statement;
while (loop repetition condition);

/* Find first even number input */
do

status = scanf(“%d”, &num);
while (status > 0 && (num % 2) != 0);

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

10

Nested Loops

• Loops may be nested just like other control
structures

• Nested loops consist of an outer loop with one
or more inner loops

• Each time the outer loop is repeated, the
inner loops are reentered, their loop control
expressions are reevaluated, and all required
iterations are performed

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

11

Chapter Objectives

• To understand why repetition is an important
control structure in programming

• To learn about loop control variables and the
three steps needed to control loop repetition

• To learn how to use the C for, while, and do-
while statements for writing loops and when
to use each statement type

• To learn how to accumulate a sum or a
product within a loop body

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

12

Chapter Objectives

• To learn common loop patterns such as counting
loops, sentinel-controlled loops, and flag-
controlled loops

• To understand nested loops and how the outer
loop control variable and inner loop control
variable are changed in a nested loop

• To learn how to debug programs using a
debugger

• To learn how to debug programs by adding
diagnostic output statements

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

13

Repetition in Programs

• loop
– a control structure that repeats a group of steps in

a program

• loop body
– the statements that are repeated in the loop

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

14

Comparison of Loop Kinds

• counting loop
– we can determine before loop execution exactly

how many loop repetitions will be needed to solve
the problem
• while,	for

• sentinel-controlled loop
– input of a list of data of any length ended by a

special value
• while,	for

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

15

Comparison of Loop Kinds
• endfile-controlled loop
– input of a single list of data of any length from a data

file
• while,	for

• input validation loop
– repeated interactive input of a data value until a value

within the valid range is entered
• do-while

• general conditional loop
– repeated processing of data until a desired condition

is met
• while,	for

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

16

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

17

Counting Loops

• counter-controlled loop
– a.k.a. counting loop
– a loop whose required number of iterations can

be determined before loop execution begins

• loop repetition condition
– the condition that controls loop repetition

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

18

Counting Loops

• loop control variable
– the variable whose value controls loop repetition

• infinite loop
– a loop that executes forever

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

19

while Statement Syntax
while (loop repetition condition)

statement;

/* display N asterisks. */
count_star = 0
while (count_star < N) {

printf(“*”);
count_star = count_star + 1;

}

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

20

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

21

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

22

Computing a Sum or Product in a Loop

• accumulator
– a variable used to store a value being computed in

increments during the execution of a loop

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

23

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

24

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

25

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

26

General Conditional Loop

1. Initialize loop control variable.
2. As long as exit condition hasn’t been met

3. Continue processing

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

27

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

28

Loop Control Components

• initialization of the loop control variable
• test of the loop repetition condition
• change (update) of the loop control variable

• the for loop supplies a designated place for
each of these three components

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

29

The for Statement Syntax
for (initialization expression;

loop repetition condition;
update expression)

statement;

/* Display N asterisks. */
for (count_star = 0;

count_star < N;
count_star += 1)

printf(“*”);

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

30

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

31

Increment and Decrement Operators

• counter = counter + 1
count += 1
counter++

• counter = counter - 1
count -= 1
counter--

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

32

Increment and Decrement Operators

• side effect
– a change in the value of a variable as a result of

carrying out an operation

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

33

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

34

Computing Factorial

• loop body executes for decreasing value of i
from n through 2

• each value of i is incorporated in the
accumulating product

• loop exit occurs when i is 1

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

35

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

36

Conditional Loops

• used when there are programming conditions
when you will not be able to determine the
exact number of loop repetitions before loop
execution begins

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

37

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

38

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

39

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

40

Loop Design

• Sentinel-Controlled Loops
– sentinel value: an end marker that follows the last

item in a list of data

• Endfile-Controlled Loops
• Infinite Loops on Faulty Data

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

41

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

42

Sentinel Loop Design

• Correct Sentinel Loop
1. Initialize sum to zero.
2. Get first score.
3. while score is not the sentinel

4. Add score to sum.
5. Get next score

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

43

Sentinel Loop Design

• Incorrect Sentinel Loop
1. Initialize sum to zero.
2. while score is not the sentinel

3. Get score
4. Add score to sum.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

44

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

45

Endfile-Controlled Loop Design

1. Get the first data value and save input status
2. while input status does not indicate that end

of file has been reached
3. Process data value
4. Get next data value and save input status

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

46

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

47

Nested Loops

• Loops may be nested just like other control
structures

• Nested loops consist of an outer loop with one
or more inner loops

• Each time the outer loop is repeated, the
inner loops are reentered, their loop control
expressions are reevaluated, and all required
iterations are performed

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

48

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

49

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

50

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

51

do-while Statement

• For conditions where we know that a loop
must execute at least one time

1. Get a data value
2. If data value isn’t in the acceptable range, go

back to step 1.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

52

do-while Syntax
do

statement;
while (loop repetition condition);

/* Find first even number input */
do

status = scanf(“%d”, &num);
while (status > 0 && (num % 2) != 0);

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

53

Flag-Controlled Loops for Input
Validation

• Sometimes a loop repetition condition
becomes so complex that placing the full
expression in its usual spot is awkward

• Simplify the condition by using a flag

• flag
• a type int variable used to represent whether or

not a certain event has occurred
• 1 (true) and 0 (false)

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

54

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

55

Off-by-One Loop Errors

• A fairly common logic error in programs with
loops is a loop that executes on more time or
one less time than required.

• If a sentinel-controlled loop performs an extra
repetition, it may erroneously process the
sentinel value along with the regular data.

• loop boundaries
– initial and final values of the loop control variable

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

56

Wrap Up

• Use a loop to repeat steps in a program
• Frequently occuring loops
– counter-controlled loop
– sentinel-controlled loop

• Other useful loops
– endfile-controlled loop
– input validation loop
– general conditional loop

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

57

