
Pointers and Modular Programming
Chapter 6

Problem Solving & Program Design in C

Eighth Edition
Jeri R. Hanly & Elliot B. Koffman

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

1

Chapter Objectives

• To learn about pointers and indirect
addressing

• To see how to access external data files in a
program and to be able to read from input file
and write to output files using file pointers

• To learn how to return function results
through a function’s arguments

• To understand the differences between call-
by-value and call-by-reference

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

2

Chapter Objectives

• To understand the distinction between input,
inout, and output parameters and when to
use each kind

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

3

Pointers

• pointer (pointer variable)
– a memory cell that stores the address of a data

item
– 8 bytes on on server but depends on machine
– syntax: type *variable

int m = 25;
int *itemp; /* a pointer to an integer */

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

4

Pointers

• pointer (pointer variable)
– a memory cell that stores the address of a data

item
– 8 bytes on on server but depends on machine
– syntax: type *variable

int m = 25;
int *itemp; /* a pointer to an integer */
itemp = &m; /* itemp points to m */

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

5

& operator (address of)

• Returns the address of a variable

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

6

Indirection/indirect reference
accessing the contents of a memory cell through a
pointer variable that stores it address

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

7

* operator (indirection)

• Follows a pointer to what it points to
• (the thing at the address it stores)

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

8

Pointers to Files

• C allows a program to explicitly name a file for
input or output.

• Declare file pointers:
– FILE *inp; /* pointer to input file */
– FILE *outp; /* pointer to output file */

• Prepare for input or output before permitting
access:
– inp = fopen(“infile.txt”, “r”);
– outp = fopen(“outfile.txt”, “w”);

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

9

Pointers to Files

• fscanf
– file equivalent of scanf
– fscanf(inp, “%lf”, &item);

• fprintf
– file equivalent of printf
– fprintf(outp, “%.2f\n”, item);

• closing a file when done
– fclose(inp);
– fclose(outp);

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

10

Segmentation fault

• Runtime error
• Means you tried to access memory that you

weren’t allowed to access
• Examples of causes:
– trying to read from a file that wasn’t open
– following a dangling pointer
– accessing data beyond array bounds

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

11

Segmentation fault

• Runtime error
• Means you tried to access memory that you

weren’t allowed to access
• Examples of causes:
– trying to read from a file that wasn’t open
– following a dangling pointer
– accessing data beyond array bounds

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

12

let’s introduce a segmentation fault in read.c

Pointers

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

13

0x5100
0x5108

?

…

0x5200
0x5204

?

…

int main(void) {
int *b;
int n;
n = 5;
b = &n;

• Create an integer pointer variable and set it

Pointers

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

14

0x5100
0x5108

…

0x5200
0x5204

…

int main(void) {
int *b;
int n;
n = 5;
b = &n;

• Create an integer pointer variable and set it

b
?

?

Pointers

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

15

0x5100
0x5108

…

0x5200
0x5204

…

int main(void) {
int *b;
int n;
n = 5;
b = &n;

• Create an integer pointer variable and set it

b

n

?

?

Pointers

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

16

0x5100
0x5108

…

0x5200
0x5204

…

int main(void) {
int *b;
int n;
n = 5;
b = &n;

• Create an integer pointer variable and set it

b

n

?

5

Pointers

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

17

0x5100
0x5108

…

0x5200
0x5204

…

int main(void) {
int *b;
int n;
n = 5;
b = &n;

• Create an integer pointer variable and set it

b

n

5200

5

Pointers

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

18

0x5100
0x5108

…

0x5200
0x5204

…

int main(void) {
int *b;
int n;
n = 5;
b = &n;
n = 6;
*b += 1;
*b = 2 * (*b);

• Create an integer pointer variable and set it

b

n

5200

6

Pointers

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

19

0x5100
0x5108

…

0x5200
0x5204

…

int main(void) {
int *b;
int n;
n = 5;
b = &n;
n = 6;
*b += 1;
*b = 2 * (*b);

• Create an integer pointer variable and set it

b

n

5200

7

Pointers

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

20

0x5100
0x5108

…

0x5200
0x5204

…

int main(void) {
int *b;
int n;
n = 5;
b = &n;
n = 6;
*b += 1;
*b = 2 * (*b);

• Create an integer pointer variable and set it

b

n

5200

14

Pointers

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

21

0x5100
0x5108

…

0x5200
0x5204

…

int main(void) {
int *b;
int n;
n = 5;
b = &n;
n = 6;
*b += 1;
*b = 2 * (*b);
b = 2 * (*b);

• Create an integer pointer variable and set it

b

n

5200

14

Pointers

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

22

0x5100
0x5108

…

0x5200
0x5204

…

int main(void) {
int *b;
int n;
n = 5;
b = &n;
n = 6;
*b += 1;
*b = 2 * (*b);
b = 2 * (*b);

• Create an integer pointer variable and set it

b

n

28

14

Pointers

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

23

0x5100
0x5108

…

0x5200
0x5204

…

int main(void) {
int *b;
int n;
n = 5;
b = &n;
n = 6;
*b += 1;
*b = 2 * (*b);
b = 2 * (*b);

• Create an integer pointer variable and set it

b

n

28

14

ptr0.c shows seg fault accessing *b

Functions with Output Parameters

• We’ve used the return statement to send back
one result value from a function.

• We can also use output parameters to return
multiple results from a function.

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

24

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

25

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

26

Meaning of Symbol *

• binary operator for multiplication
• “pointer to” when used when declaring a

variable or a function parameters
• unary indirection operator in a function body

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

27

Multiple Calls to a Function with
Input/Output Parameters

An example of sorting data

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

28

© 2016 Pearson Education, Inc., Hoboken,
NJ. All rights reserved.

29

