
Pointers and Modular Programming
Chapter 6

Problem Solving & Program Design in C

Eighth Edition
Jeri R. Hanly & Elliot B. Koffman

© 2016 Pearson Education, Inc., Hoboken, 
NJ.  All rights reserved.

1



Chapter Objectives

• To learn about pointers and indirect 
addressing

• To see how to access external data files in a 
program and to be able to read from input file 
and write to output files using file pointers

• To learn how to return function results 
through a function’s arguments

• To understand the differences between call-
by-value and call-by-reference
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Chapter Objectives

• To understand the distinction between input, 
inout, and output parameters and when to 
use each kind
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Pointers

• pointer (pointer variable)
– a memory cell that stores the address of a data 

item
– 8 bytes on on server but depends on machine
– syntax: type  *variable

int m  =  25;
int  *itemp;   /* a pointer to an integer */
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Pointers

• pointer (pointer variable)
– a memory cell that stores the address of a data 

item
– 8 bytes on on server but depends on machine
– syntax: type  *variable

int m  =  25;
int  *itemp;   /* a pointer to an integer */
itemp = &m;   /* itemp points to m */
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& operator (address of) 

• Returns the address of a variable
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Indirection/indirect reference
accessing the contents of a memory cell through a 
pointer variable that stores it address
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* operator (indirection) 

• Follows a pointer to what it points to
• (the thing at the address it stores)
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Pointers to Files

• C allows a program to explicitly name a file for 
input or output.

• Declare file pointers:
– FILE  *inp; /* pointer to input file */
– FILE  *outp; /* pointer to output file */

• Prepare for input or output before permitting 
access:
– inp = fopen(“infile.txt”, “r”);
– outp = fopen(“outfile.txt”, “w”);
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Pointers to Files

• fscanf
– file equivalent of scanf
– fscanf(inp, “%lf”, &item);

• fprintf
– file equivalent of printf
– fprintf(outp, “%.2f\n”, item);

• closing a file when done
– fclose(inp);
– fclose(outp);
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Segmentation fault

• Runtime error
• Means you tried to access memory that you 

weren’t allowed to access
• Examples of causes:
– trying to read from a file that wasn’t open
– following a dangling pointer
– accessing data beyond array bounds
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Segmentation fault

• Runtime error
• Means you tried to access memory that you 

weren’t allowed to access
• Examples of causes:
– trying to read from a file that wasn’t open
– following a dangling pointer
– accessing data beyond array bounds
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int main(void) {
int *b;
int n;
n = 5;
b = &n;

• Create an integer pointer variable and set it
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Functions with Output Parameters

• We’ve used the return statement to send back 
one result value from a function.

• We can also use output parameters to return 
multiple results from a function.
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Meaning of Symbol *

• binary operator for multiplication
• “pointer to” when used when declaring a 

variable or a function parameters
• unary indirection operator in a function body
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Multiple Calls to a Function with 
Input/Output Parameters

An example of sorting data
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