
Chapter 3
Objects, types, and values

Bjarne Stroustrup

www.stroustrup.com/Programming

Input and output

// read first name:
#include <iostream>
using namespace std;

int main()
{

cout << “Enter name: “;
string name;
cin >> name;
cout << "Hello, " << name << endl;

}
// note how several values can be output by a single statement
// a statement that introduces a variable is called a declaration
// a variable holds a value of a specified type
// the final return 0; is optional in main()
// but you may need to include it to pacify your compiler

2Stroustrup/Programming/2015

string is the first time
we see a class that we
don’t know what it does
underneath the hood

Input and type
n We read into a variable

n Here, name
n A variable has a type

n Here, string
n The type of a variable determines what operations we

can do on it
n Here, cin>>first_name; reads characters until a whitespace

character is seen (“a word”)
n White space: space, tab, newline, …

3Stroustrup/Programming/2015

known as an object in C++

String input

// read first and second name:
int main()
{

cout << "please enter your first and second names\n";
string first;
string second;
cin >> first >> second; // read two strings
string name = first + ' ' + second; // concatenate strings

// separated by a space
cout << "Hello, "<< name << '\n';

}

4Stroustrup/Programming/2015

Integers
// read name and age:

int main()
{

cout << "please enter your first name and age\n";
string first_name; // string variable
int age; // integer variable
cin >> first_name >> age; // read
cout << "Hello, " << first_name << " age " << age << '\n';

}

5Stroustrup/Programming/2015

Integers and Strings

n Strings
n cin >> reads a word
n cout << writes
n + concatenates
n += s adds the string s at end
n ++ is an error
n - is an error

n …

n Integers and floating-point numbers
n cin >> reads a number
n cout << writes
n + adds
n += n increments by the int n
n ++ increments by 1
n - subtracts
n …

6

The type of a variable determines which operations are valid
and what their meanings are for that type

(that's called “overloading” or “operator overloading”)

Stroustrup/Programming/2015

Stroustrup/Programming/2015 7

Simple arithmetic
// do a bit of very simple arithmetic:

int main()
{

cout << "please enter a floating-point number: "; // prompt for a number
double n; // floating-point variable
cin >> n;
cout << "n == " << n

<< "\nn+1 == " << n+1 // '\n' means “a newline”
<< "\nthree times n == " << 3*n
<< "\ntwice n == " << n+n
<< "\nn squared == " << n*n
<< "\nhalf of n == " << n/2
<< "\nsquare root of n == " << sqrt(n) // library function
<< '\n';

8Stroustrup/Programming/2015

A simple computation

int main() // inch to cm conversion
{

const double cm_per_inch = 2.54; // number of centimeters per inch
int length = 1; // length in inches
while (length != 0) // length == 0 is used to exit the program
{ // a compound statement (a block)

cout << "Please enter a length in inches: ";
cin >> length;
cout << length << "in. = "

<< cm_per_inch*length << "cm.\n";
}

}
n A while-statement repeatedly executes until its condition becomes false

9Stroustrup/Programming/2015

simpbad.cpp
simplecomp.cpp

Types and literals
n Built-in types

n Boolean type
n bool

n Character types
n char

n Integer types
n int

n and short and long
n Floating-point types

n double
n and float

n Standard-library types
n string

n complex<Scalar>

n Boolean literals
n true false

n Character literals
n 'a', 'x', '4', '\n', '$'

n Integer literals
n 0, 1, 123, -6, 034, 0xa3

n Floating point literals
n 1.2, 13.345, .3, -0.54, 1.2e3, .3F

n String literals "asdf",
"Howdy, all y'all!"

n Complex literals
n complex<double>(12.3,99)
n complex<float>(1.3F)

10Stroustrup/Programming/2015

Types

n C++ provides a set of types
n E.g. bool, char, int, double
n Called “built-in types”

n C++ programmers can define new types
n Called “user-defined types”
n We'll get to that eventually

n The C++ standard library provides a set of types
n E.g. string, vector, complex

n Technically, these are user-defined types
n they are built using only facilities available to every user

11Stroustrup/Programming/2015

Declaration and initialization

int a = 7;

int b = 9;

char c = 'a';

double x = 1.2;

string s1 = "Hello, world";

string s2 = "1.2";

12

7

9

'a'

1.2

12 | "Hello, world"

3 | "1.2"

a:

b:

c:

x:

s1:

s2:

Stroustrup/Programming/2015

Objects

n An object is some memory that can hold a value of a given type
n A variable is a named object
n A declaration names an object

int a = 7;
char c = 'x';
complex<double> z(1.0,2.0);
string s = "qwerty";

13

7

'x'

1.0

"qwerty"

2.0

6

a:

s:

c:

z:

Stroustrup/Programming/2015

Type safety
n Language rule: type safety

n Every object will be used only according to its type
n A variable will be used only after it has been initialized
n Only operations defined for the variable's declared type will be

applied
n Every operation defined for a variable leaves the variable with a

valid value
n Ideal: static type safety

n A program that violates type safety will not compile
n The compiler reports every violation (in an ideal system)

n Ideal: dynamic type safety
n If you write a program that violates type safety it will be

detected at run time
n Some code (typically "the run-time system") detects every

violation not found by the compiler (in an ideal system)

14Stroustrup/Programming/2015

Type safety
n Type safety is a very big deal

n Try very hard not to violate it
n “when you program, the compiler is your best friend”

n But it won’t feel like that when it rejects code you’re sure is correct

n C++ is not (completely) statically type safe
n No widely-used language is (completely) statically type safe
n Being completely statically type safe may interfere with your ability to

express ideas
n C++ is not (completely) dynamically type safe

n Many languages are dynamically type safe
n Being completely dynamically type safe may interfere with the ability to

express ideas and often makes generated code bigger and/or slower
n Almost all of what you’ll be taught here is type safe

n We’ll specifically mention anything that is not

15Stroustrup/Programming/2015

Assignment and increment

// changing the value of a variable
int a = 7; // a variable of type int called a

// initialized to the integer value 7
a = 9; // assignment: now change a's value to 9

a = a+a; // assignment: now double a's value

a += 2; // increment a's value by 2

++a; // increment a's value (by 1)

16

7

9

18

20

21

a:

Stroustrup/Programming/2015

A type-safety violation
(“implicit narrowing”)

// Beware: C++ does not prevent you from trying to put a large value
// into a small variable (though a compiler may warn)

int main()
{

int a = 20000;
char c = a;
int b = c;
if (a != b) // != means “not equal”

cout << "oops!: " << a << "!=" << b << '\n';
else

cout << "Wow! We have large characters\n";
}

n Try it to see what value b gets on your machine
17

20000a

???c:

Stroustrup/Programming/2015

Initialization Notation

n C++ introduced a notation that outlaws
narrowing conversions

n Uses {} for setting an object

Stroustrup/Programming/2015 18

A type-safety violation (Uninitialized variables)

// Beware: C++ does not prevent you from trying to use a variable
// before you have initialized it (though a compiler typically warns)

int main()
{

int x; // x gets a “random” initial value
char c; // c gets a “random” initial value
double d; // d gets a “random” initial value

// – not every bit pattern is a valid floating-point value
double dd = d; // potential error: some implementations

// can’t copy invalid floating-point values
cout << " x: " << x << " c: " << c << " d: " << d << '\n';

}
n Always initialize your variables – beware: “debug mode” may initialize

(valid exception to this rule: input variable)

19Stroustrup/Programming/2015

A technical detail
n In memory, everything is just bits; type is what gives meaning

to the bits
(bits/binary) 01100001 is the int 97 is the char 'a'
(bits/binary) 01000001 is the int 65 is the char 'A'
(bits/binary) 00110000 is the int 48 is the char '0'

char c = 'a';
cout << c; // print the value of character c, which is a
int i = c;
cout << i; // print the integer value of the character c, which is 97

n This is just as in “the real world”:
n What does “42” mean?
n You don’t know until you know the unit used

n Meters? Feet? Degrees Celsius? $s? a street number? Height in inches? …

20Stroustrup/Programming/2015

About Efficiency
n For now, don’t worry about “efficiency”

n Concentrate on correctness and simplicity of code
n C++ is derived from C, which is a systems programming language

n C++’s built-in types map directly to computer main memory
n a char is stored in a byte
n An int is stored in a word
n A double fits in a floating-point register

n C++’s built-in operations map directly to machine instructions
n An integer + is implemented by an integer add operation
n An integer = is implemented by a simple copy operation

n C++ provides direct access to most of the facilities provided by modern
hardware

n C++ help users build safer, more elegant, and efficient new types
and operations using built-in types and operations.
n E.g., string
n Eventually, we’ll show some of how that’s done

21Stroustrup/Programming/2015

A bit of philosophy

n One of the ways that programming resembles other kinds of
engineering is that it involves tradeoffs.

n You must have ideals, but they often conflict, so you must
decide what really matters for a given program.
n Type safety
n Run-time performance
n Ability to run on a given platform
n Ability to run on multiple platforms with same results
n Compatibility with other code and systems
n Ease of construction
n Ease of maintenance

n Don’t skimp on correctness or testing
n By default, aim for type safety and portability

22Stroustrup/Programming/2015

Another simple computation

// inch to cm and cm to inch conversion:

int main()
{

const double cm_per_inch = 2.54;
int val;
char unit;
while (cin >> val >> unit) { // keep reading

if (unit == 'i') // 'i' for inch
cout << val << "in == " << val*cm_per_inch << "cm\n";

else if (unit == 'c') // 'c' for cm
cout << val << "cm == " << val/cm_per_inch << "in\n";

else
return 0; // terminate on a “bad unit”, e.g. 'q'

}
}

23Stroustrup/Programming/2015

C++11 hint
n All language standards are updated occasionally

n Often every 5 or 10 years

n The latest standard has the most and the nicest features
n Currently C++14

n The latest standard is not 100% supported by all compilers
n GCC (Linux) and Clang (Mac) are fine
n Microsoft C++ is OK
n Other implementations (many) vary

Stroustrup/Programming/2015 24

C++14 Hint
n You can use the type of an initializer as the type of a variable

n // “auto” means “the type of the initializer”
n auto x = 1; // 1 is an int, so x is an int
n auto y = ′c′; // ′c′ is a char, so y is a char
n auto d = 1.2; // 1.2 is a double, so d is a double

n auto s = ″Howdy″; // ″Howdy″ is a string literal of type const char[]
// so don’t do that until you know what it means!

n auto sq = sqrt(2); // sq is the right type for the result of sqrt(2)
// and you don’t have to remember what that is

n auto duh; // error: no initializer for auto

Stroustrup/Programming/2015 25

