Chapter 3
Objects, types, and values

Bjarne Stroustrup

www.stroustrup.com/Programming

VR
Input and output

I/ read first name:
#include <iostream>

; string is the first time
using namespace std;

we see a class that we
don’t know what it does
int main() underneath the hood

1

cout << “Enter name: ;

string name;

cin >> name;

cout << "Hello, " << name << endl;
f
I/ note how several values can be output by a single statement
/[a statement that introduces a variable is called a declaration
Il a variable holds a value of a specified type
/I the final return 0; is optional in main()

/I but you may need to include it to pacify your compiler
Stroustrup/Programming/2015 2

VR
Input and type

= We read into a variable

s Here, name known as an object in C++
= A variable has a type

= Here, string

= The type of a variable determines what operations we
can do on it

m Here, cin>>first_name; reads characters until a whitespace
character 1s seen (“a word™)

s White space: space, tab, newline, ...

Stroustrup/Programming/2015 3

VR
String input

I/ read first and second name:
int main()

t

cout << "please enter your first and second names\n'';
string first;
string second;

cin >> first >> second; /] read two strings
string name = first + ' ' + second; /[concatenate strings
// separated by a space

cout << "Hello, ""<< name << '\n';

Stroustrup/Programming/2015 4

VR
Integers

/[read name and age:

int main()

d

cout << "please enter your first name and age\n'';

string first name; /I string variable

int age; /] integer variable

cin >> first name >> age; Il read

cout << "Hello, " << first name << " age "' << age << '\n';
5

Stroustrup/Programming/2015 5

7\

Integers and Strings

= Strings
m cin >> reads a word O
m cout << writes N
m + concatenates n
m +=s adds the string s at end 0
m ++ 1S an error o
® - 1S an error O
B ||

= Integers and floating-point numbers

cin >> reads a number

cout << writes

+ adds

+= n increments by the int n
++ increments by 1

- subtracts

The type of a variable determines which operations are valid

and what their meanings are for that type
(that's called “overloading” or “operator overloading”)

Stroustrup/Programming/2015 6

bool char int double string /\

assignment = — = = = Smarter computing.
addition - -

concatenation -

subtraction - -

multiplication - .

division / /

remainder (modulo) %
increment by 1 - ++

decrement by 1 —-— —

increment by n +=n +=n
add to end -
. § >> s >> s >>
decrement by n -=n -=n read from s into x §>>X §>>X
X X X
multiply and assign *= *=
g : : § << § << § <<
divide and assign /= /= writextos s << X s << X
X X X

remainder and
o= equals == == == == ==

assign

not equal
greater than
greater than or equal
less than

less than or equal

Stroustrup/Pr

7\

Smarter computing.

Simple arithmetic

// do a bit of very simple arithmetic:

int main()

d

cout << "please enter a floating-point number: "'; // prompt for a number
double n; /I floating-point variable
cin >> n;
cout<<'"m=="<<n
<< "\nn+1 =" <<n+1 /[l \n" means “a newline”
<< "\nthree times n == " << 3*n
<< "\ntwice n == " << n+n
<< "\nn squared ==" << n*n
<< "\nmhalf of n ==" << n/2

<< "\nsquare root of n ==" << sqrt(n) // library function
<< \n’;

Stroustrup/Programming/2015 8

7 \
A simple computation =~ =

int main() Il inch to cm conversion
|
const double cm_per_inch = 2.54; // number of centimeters per inch
int length = 1; /I length in inches
while (Iength != 0) / length == 0 is used to exit the program
{ I/ a compound statement (a block)

cout << "Please enter a length in inches: ";

cin >> length;

cout <<length << "in. =" simpbad.cpp
<< cm_per_inch*length << "cm.\n"; simplecomp.cpp

)

= A while-statement repeatedly executes until its condition becomes false

Stroustrup/Programming/2015 9

. 7 \
Types and literals

= Built-in types

s Boolean type = Boolean literals
m true false

= bool
m Character types = Character literals
= char u 'aV, 'X', 74!, '\nV, !$'
O Integer types = Integer literals
= Int = 0,1,123, -6, 034, 0xa3
= and short and long
s Floating-point types = Floating point literals
= double s 1.2, 13.345, .3, -0.54, 1.2¢3, .3F
= and float
- Standard—library types m String literals "asdf",
¢ "Howdy, all y'all!"
= string

= complex<Scalar> m Complex literals
s complex<double>(12.3,99)

= complex<float>(1.3F)

Stroustrup/Programming/2015 10

7\

I yp e S Smarter computing.

m C++ provides a set of types

m E.g. bool, char, int, double
s Called “built-in types”

m C++ programmers can define new types
m Called “user-defined types”
m We'll get to that eventually
s The C++ standard library provides a set of types

m E.g. string, vector, complex

m Technically, these are user-defined types

= they are built using only facilities available to every user

Stroustrup/Programming/2015 11

VR
Declaration and initialization =

inta=7; '3 7

intb =9; 4 9

char c ="'a'; 3 g
double x = 1.2; X: 1.2

string s1 = "Hello, world"'; s1: 12 | "Hello, world"
string s2 = "1.2"; s2: 3 | "1.2"

Stroustrup/Programming/2015 12

Objects

Smarter computing.

An object 1s some memory that can hold a value of a given type

A variable 1s a named object
A declaration names an object

inta=7; a: 7

char ¢ = 'x'; v

complex<double> z(1.0,2.0);

string s = "qwerty''; Z 1.0 2.0
: °] "qwerty"

Stroustrup/Programming/2015

13

7\

Type satety

= Language rule: type safety

m Every object will be used only according to its type
= A variable will be used only after it has been initialized

= Only operations defined for the variable's declared type will be
applied

= Every operation defined for a variable leaves the variable with a
valid value

n Ideal: static type safety

m A program that violates type safety will not compile
= The compiler reports every violation (in an ideal system)

s Ideal: dynamic type safety

= [f you write a program that violates type safety 1t will be
detected at run time

= Some code (typically "the run-time system") detects every
violation not found by the compiler (in an ideal system)

Stroustrup/Programming/2015 14

7\

Type satety

Type safety 1s a very big deal

s Try very hard not to violate it

= “when you program, the compiler is your best friend”
= But it won’t feel like that when it rejects code you' re sure is correct

C++ 1s not (completely) statically type safe
s No widely-used language is (completely) statically type safe

m Being completely statically type safe may interfere with your ability to

express 1deas

C++ 1s not (completely) dynamically type safe
s Many languages are dynamically type safe

s Being completely dynamically type safe may interfere with the ability to

express 1deas and often makes generated code bigger and/or slower

Almost all of what you’ll be taught here 1s type safe

s We’ll specifically mention anything that is not

Stroustrup/Programming/2015

15

7\
Assignment and increment -

a:

/[changing the value of a variable

inta=7; Il a variable of type int called a y

/[initialized to the integer value 7

a=09; /I assignment: now change a's value to 9 9
a=ata; /I assignment: now double a's value 18
a+=2; I/ increment a's value by 2 20
++a; [/ increment a's value (by 1) 21

Stroustrup/Programming/2015 16

A type-safety violation

(“implicit narrowing)

Smarter computing.

Il Beware: C++ does not prevent you from trying to put a large value
/[into.a small variable (though a compiler may warn)

int main()
d
i 20000
int a =20000; a
.char c=a; - -
int b = c;
if (a !=Db) /| I= means “not equal’’
cout << "OOpS!: "<<a<<"="<<h<<"n';
else

cout << "Wow! We have large characters\n'';

§

= Try it to see what value b gets on your machine
Stroustrup/Programming/2015 17

Initialization Notation

m C++ introduced a notation that outlaws
narrowing conversions

m Uses {} for setting an object

Stroustrup/Programming/2015

Sm

18

~~
A type-satety violation (uninitialized variablesy™

/[Beware: C++ does not prevent you from trying to use a variable
/I before you have initialized it (though a compiler typically warns)

int main()

{
int x; /Il x gets a “random ” initial value
char c; /] c gets a “random ” initial value
double d; Il d gets a “random” initial value
/[— not every bit pattern is a valid floating-point value
double dd = d; /[potential error.: some implementations
/I can 't copy invalid floating-point values
cout<<"x:"<<x<<"e:"<<e<<"d:"<<d<<"\n';
)

= Always initialize your variables — beware: “debug mode” may initialize
(valid exception to this rule: input variable)

Stroustrup/Programming/2015 19

7 \
A technical detail

= In memory, everything is just bits; type 1s what gives meaning
to the bits
(bits/binary) 01100001 is the int 97 is the char 'a’
(bits/binary) 01000001 is the int 65 is the char 'A'
(bits/binary) 00110000 is the int 48 is the char '0’

char ¢ ='a’;

cout << c¢; // print the value of character ¢, which is a

inti=c;

cout <<i; // print the integer value of the character ¢, which is 97

= This is just as in " the real world”:

= What does “42” mean?

= You don’ t know until you know the unit used
= Meters? Feet? Degrees Celsius? $s? a street number? Height in inches? ...

Stroustrup/Programming/2015 20

7\

About Efficiency

= For now, don’t worry about “efficiency”
s Concentrate on correctness and simplicity of code

m C++1s derived from C, which 1s a systems programming language
s C++’s built-in types map directly to computer main memory
= a char is stored in a byte
= An int is stored in a word
= A double fits in a floating-point register
m C++’s built-in operations map directly to machine instructions
= An integer + 1s implemented by an integer add operation
= An integer = 1s implemented by a simple copy operation
s C++ provides direct access to most of the facilities provided by modern
hardware
s C++ help users build safer, more elegant, and efficient new types
and operations using built-in types and operations.
m E.g., string
= Eventually, we’ll show some of how that’s done

Stroustrup/Programming/2015 21

7\

A bit of philosophy

One of the ways that programming resembles other kinds of
engineering 1s that it involves tradeoffs.

Y ou must have 1deals, but they often conflict, so you must
decide what really matters for a given program.

m Type safety

= Run-time performance

= Ability to run on a given platform

= Ability to run on multiple platforms with same results

s Compatibility with other code and systems

m FEase of construction

m FEase of maintenance

Don’t skimp on correctness or testing
By default, aim for type safety and portability

Stroustrup/Programming/2015 22

VR
Another simple computation =

/] inch to cm and cm to inch conversion:

int main()

1
const double cm_per_inch = 2.54;
int val;
char unit;
while (cin >> val >> unit) { // keep reading
if (unit =="1") /[i’ for inch
cout << val <<'"in == " <<val*cm_per_inch <<'"cm\n'';
else if (unit == 'c¢') /Il 'e! for cm
cout << val <<"em ==" << val/cm_per_inch << "in\n"’;
else
return 0; /] terminate on a “bad unit”, e.g. 'q’
§
)

Stroustrup/Programming/2015 23

. 7 \
C++11 hint

m All language standards are updated occasionally
s Often every 5 or 10 years

m The latest standard has the most and the nicest features
s Currently C++14

s The latest standard 1s not 100% supported by all compilers

s GCC (Linux) and Clang (Mac) are fine
s Microsoft C++1s OK

s Other implementations (many) vary

Stroustrup/Programming/2015 24

7\

C++14 Hint

= You can use the type of an initializer as the type of a variable

// “auto” means “the type of the initializer”

auto x = 1; /['1 is an int, so x is an int

auto y = 'c’; /['c" is a char, so y is a char
autod =1.2; /[l 1.2 is a double, so d is a double

auto s = "Howdy"'; // "Howdy" is a string literal of type const char(]
I/ so don’t do that until you know what it means!

auto sq = sqrt(2); // sq is the right type for the result of sqrt(2)
/I and you don 't have to remember what that is

auto duh; /[error: no initializer for auto

Stroustrup/Programming/2015 25

