
12.1. Merge-Sort 537

12.1.2 Array-Based Implementation of Merge-Sort

We begin by focusing on the case when a sequence of items is represented with an
array. The merge method (Code Fragment 12.1) is responsible for the subtask of
merging two previously sorted sequences, S1 and S2, with the output copied into S.
We copy one element during each pass of the while loop, conditionally determining
whether the next element should be taken from S1 or S2. The divide-and-conquer
merge-sort algorithm is given in Code Fragment 12.2.

We illustrate a step of the merge process in Figure 12.5. During the process,
index i represents the number of elements of S1 that have been copied to S, while
index j represents the number of elements of S2 that have been copied to S. Assum-
ing S1 and S2 both have at least one uncopied element, we copy the smaller of the
two elements being considered. Since i+ j objects have been previously copied,
the next element is placed in S[i+ j]. (For example, when i+ j is 0, the next ele-
ment is copied to S[0]). If we reach the end of one of the sequences, we must copy
the next element from the other.

1 /∗∗ Merge contents of arrays S1 and S2 into properly sized array S. ∗/
2 public static <K> void merge(K[] S1, K[] S2, K[] S, Comparator<K> comp) {
3 int i = 0, j = 0;
4 while (i + j < S.length) {
5 if (j == S2.length | | (i < S1.length && comp.compare(S1[i], S2[j]) < 0))
6 S[i+j] = S1[i++]; // copy ith element of S1 and increment i
7 else
8 S[i+j] = S2[j++]; // copy jth element of S2 and increment j
9 }

10 }

Code Fragment 12.1: An implementation of the merge operation for a Java array.

S1

S

S2

0 1 2 3 4 65

2518 19 229 10

92

j

i

i+ j

3

1 2 3 4 65

11 12 142 5 8

0

15

0 1 2 3 4 6 7 8 9 105 11 12 13

83 5 S

S1

S2

5

0 1 2 3 4 65

2518 19 223 10

92

i

j

i+ j

10

9

1 2 3 4 65

11 12 142 5 8

0

15

0 1 2 3 4 6 7 8 9 105 11 12 13

83

(a) (b)

Figure 12.5: A step in the merge of two sorted arrays for which S2[j] < S1[i]. We
show the arrays before the copy step in (a) and after it in (b).

www.it-ebooks.info

538 Chapter 12. Sorting and Selection

1 /∗∗ Merge-sort contents of array S. ∗/
2 public static <K> void mergeSort(K[] S, Comparator<K> comp) {
3 int n = S.length;
4 if (n < 2) return; // array is trivially sorted
5 // divide
6 int mid = n/2;
7 K[] S1 = Arrays.copyOfRange(S, 0, mid); // copy of first half
8 K[] S2 = Arrays.copyOfRange(S, mid, n); // copy of second half
9 // conquer (with recursion)

10 mergeSort(S1, comp); // sort copy of first half
11 mergeSort(S2, comp); // sort copy of second half
12 // merge results
13 merge(S1, S2, S, comp); // merge sorted halves back into original
14 }

Code Fragment 12.2: An implementation of the recursive merge-sort algorithm for
a Java array (using the merge method defined in Code Fragment 12.1).

We note that methods merge and mergeSort rely on use of a Comparator in-
stance to compare a pair of generic objects that are presumed to belong to a total
order. This is the same approach we introduced when defining priority queues in
Section 9.2.2, and when studying implementing sorted maps in Chapters 10 and 11.

12.1.3 The Running Time of Merge-Sort

We begin by analyzing the running time of the merge algorithm. Let n1 and n2

be the number of elements of S1 and S2, respectively. It is clear that the operations
performed inside each pass of the while loop take O(1) time. The key observation is
that during each iteration of the loop, one element is copied from either S1 or S2 into
S (and that element is considered no further). Therefore, the number of iterations
of the loop is n1 +n2. Thus, the running time of algorithm merge is O(n1 +n2).

Having analyzed the running time of the merge algorithm used to combine
subproblems, let us analyze the running time of the entire merge-sort algorithm,
assuming it is given an input sequence of n elements. For simplicity, we restrict our
attention to the case where n is a power of 2. We leave it to an exercise (R-12.3) to
show that the result of our analysis also holds when n is not a power of 2.

When evaluating the merge-sort recursion, we rely on the analysis technique
introduced in Section 5.2. We account for the amount of time spent within each
recursive call, but excluding any time spent waiting for successive recursive calls
to terminate. In the case of our mergeSort method, we account for the time to
divide the sequence into two subsequences, and the call to merge to combine the
two sorted sequences, but we exclude the two recursive calls to mergeSort.

www.it-ebooks.info

