- Turn in your group's worksheet
- Sit unevever you want for lecture

Big O
Bet let $f, g: \mathbb{R}^{\geqslant 0} \rightarrow \mathbb{R}^{\geqslant 0}$. We say that f is $O(g)$ if $\exists c>0, n_{0} \geqslant 0$ s.t.

$$
\forall n \geqslant n_{0}: f(n) \leqslant c \cdot g(n) .
$$

We also write $f=O(g)$ to mean f is $O(g)$. why 0 ? "order" of a function.
ex $f(n)=3 n^{2}+2$ is $O\left(n^{2}\right)$.
Proof We must give $c>0, n_{0} \geqslant 0$ s.t.

$$
\forall n \geqslant n_{0}: f(n) \leq c \cdot n^{2} .
$$

Note that $\forall n \geqslant 1,2 n^{2} \geqslant 2$, so
$\rightarrow \forall n \geqslant 1: f(n)=3 n^{2}+2 \leq 3 n^{2}+2 n^{2}=5 n^{2}$.
So we can choose $c=5, n_{0}=1$ and we have $\underset{\substack{1 \\ n_{0}}}{\forall n \geqslant 1}: \quad f(n) \leq \sum_{c}^{5} \cdot n^{2}$

(a) $f(n)$ is $O\left(n^{2}\right)$ with $c=5$ and $n_{0}=1$.
ex $g(n)=4 n$ is $0\left(n^{2}\right) . \quad T$
Proof we must give $c>0, n_{0} \geqslant 0$ s.t.

$$
4 n \leqslant c \cdot n^{2} \text { for all } n \geqslant n_{0} \text {. }
$$

Note mat $4 n$ and n^{2} cross exactly one time, at $n=4$. So we can pick $n_{0}=4$, $c=1$.

$$
\forall n \geq{\underset{\sim}{n}}_{n_{0}}^{4}: 4 n \leq 1 \cdot n^{2}
$$

Q is $4 n=0\left(4 n^{2}\right)$? Yes

$$
\text { Is } 3 n^{2}+2=O\left(\frac{1}{2} n^{2}\right) \text { yes }
$$

we prefer $3 n^{2}+2=O\left(n^{2}\right)$ - the simplest form in big 0 .
another ex

$$
\begin{aligned}
& n^{2}=0\left(n^{3}\right) \\
& \text { but } n^{2} \neq n^{3}
\end{aligned}
$$

n^{3} is not $O\left(n^{2}\right)$. T
Proof we wiS $\forall c>0, n_{0} \geqslant 0, \exists n \geqslant n_{0}$:

$$
\underset{n^{3}}{f(n)}>c \cdot n^{2} g(n)
$$

To do this, we show how to construct such an n for any choice of c, n_{0}.
let $c>0$ and $n_{0} \geqslant 0$. We need $n \geqslant n_{0}$ s.t. $n^{3}>\mathrm{cn}^{2}$. Wet $n=c+1$.

$$
n^{3}=(c+1)^{3}
$$

Which is greater tran $c n^{2}=c(c+1)^{2}$, since $c>0$. So we have $n^{3}>\mathrm{Cn}^{2}$.
But if $n_{0}>c+1$, we can't set $n=c+1$, because we need $n \geqslant n_{0}$. So choose holds.
We have shown how to produce an $n \geqslant n$. St. $n^{3}>c n^{2}$ for any $c>0, n_{0} \geqslant 0$, so $n^{3} \neq 0\left(n^{2}\right)$.

(c) No value of c has $n^{3}<c n^{2}$ for all large n.

$$
2 n^{3}+n^{2}=O\left(n^{3}\right)
$$

Common Distinct Functions

$$
\begin{aligned}
\log \quad 3 \log _{2} n \quad c \log _{b} n \\
b \in \mathbb{R}^{2}, c \in \mathbb{R}^{20}
\end{aligned}
$$

$O(\log n)$

$$
\text { (n, } c \in \mathbb{R}^{\geqslant 0}
$$

$O(n)$
$O(n \log n)$
quadratic $3 n^{2}+n \quad$ deg-2 $\underset{\text { polynomial }}{ } O\left(n^{2}\right)$

cubic	deg-3 polynomial $O\left(n^{3}\right)$	
\vdots		$O\left(n^{k}\right)$
degk polynomial	2^{n}	$O\left(2^{n}\right)$
exponential	3^{n}	$O\left(3^{n}\right)$
$n!=O\left(n^{n}\right)$		
$n \cdot(n-1) \cdot(n-2) \cdots 1$		

What do we mean unen we say "distinct"?

- later on the list $\neq O$ (earlier on list)

$$
\begin{aligned}
& 2^{n} \neq O\left(n^{100}\right) \\
& 3 n^{2} \neq O(n \log n)
\end{aligned}
$$

- earlier on list $=O$ (later on list)

$$
\begin{aligned}
& n^{100}=O\left(2^{n}\right) \\
& n^{100}=O\left(n^{100}\right)
\end{aligned}
$$

can 1 write $f(n)=O(\sin (n))$? for any $f(n)$?
other asymptotic relations Big omega (Ω) - f grows

$$
\begin{aligned}
& f \text { is } \Omega(g) \text { if } \exists d>0, n_{0} \geqslant 0 \\
& \text { s.t. }
\end{aligned}
$$

$$
\forall n \geqslant n_{0}: f(n) \geqslant d \cdot g(n)
$$

Big Theta (θ)

$$
\begin{aligned}
& f \text { is } \Theta(g) \text { if } f=O(g) \\
& \text { and } f=\Omega(g)
\end{aligned}
$$

Properties of Big O
lemma 6.2 Asymptotic Equivalence of max and sum

$$
f(n)=O(g(n)+h(n)) \Leftrightarrow f(n)=0(\max (g(n),
$$

ex

$$
\begin{aligned}
& f(n)=n^{2}+n=O\left(n^{2}+n\right) \\
& f(n)=O\left(\max \left(n^{2}, n\right)\right) \\
& f(n)=O\left(n^{2}\right)
\end{aligned}
$$

This lemma tells us that we can drop lower order terms.
Proof Because lemmata 6.2 is \Leftrightarrow, we prove each separatelin.
\Leftrightarrow uTs $f(n)=0(g(n)+h(n)) \Rightarrow$

$$
f(n)=0(\max (g(n), h(n)) \text {. }
$$

Assume $f(n)=0(g(n)+h(n))$.
UTS $f(n)=0(\max (g(n), h(n)) \leftarrow$
$\exists c>0, n_{0} \geqslant 0: \forall n \geqslant n_{0}:$

$$
\begin{aligned}
f(n) & \leq c \cdot(g(n)+h(n)) \\
& \leq c \cdot(\max (g(n), h(n))+h(n)) \\
& \leq c \cdot(\max (g(n), h(n)+\max (g(n), h(n))) \\
& =c \cdot 2 \cdot \max (g(n), h(n))
\end{aligned}
$$

choose $c^{\prime}=2 c$ and $n_{0}^{\prime}=n_{0}$
goal: find some $c^{\prime}>0, n_{0}^{\prime} \geqslant 0$ s.t.

$$
\forall n \geq n_{0}: f(n) \leq c^{\prime} \cdot \max (g(n), h(n))
$$

(\Leftrightarrow) in book
lemma 6.5 A symptotics of polynomials
Let $f(n)=\sum_{i=0}^{k} a_{i} n^{i}=a_{0} n^{0}+a_{1} n^{1}+a_{2} n^{2}+\cdots a_{k} n^{k}$ be a deg-k polynomial. Then $f(n)=o\left(n^{k}\right)$.

Lemma 6.3 Transitivity of big 0

$$
f(n) \longrightarrow g(n) \longrightarrow h(n)
$$

If $f(n)=O(g(n))$ and $g(n)=O(h(n))$, then $f(n)=O(n(n))$.
More interesting properties in book
To measure the runtime of an algorithm we: worst case
(1) give $f(n)$ counting ${ }^{2}$ \# of privations on inpive operations on input of size n
(2) find simplest $g(n)$ st. $f(n)=\theta(g(n))$

That $g(n)$ is runtime of the algorithm.

