2. Prove

$$
\underbrace{P(A) \cup P(B)}_{G} \subseteq \underbrace{P(A \cup B)}_{H}
$$

Prove an equivalent claim,

$$
\text { wen } x \in G, x \in H
$$

if $x \in G$, then $x \in H$.
Proof Assume $x \in G$. Ts $x \in H$.

$$
x \in H .
$$

$$
\begin{aligned}
& q \Rightarrow p \\
& 1 q \Rightarrow 1 p
\end{aligned}
$$

p	$\neg q$	$\neg p$	$p \Rightarrow \neg q$	$\neg q \Rightarrow \neg p$	$\neg p \Rightarrow \neg q$
T	T	F	E	T	T
T	F	T	T	F	F
E	T	F	T		
F	F	T	T	T	T
T	T	T			

$$
p \Rightarrow q \equiv \neg q \Rightarrow \neg p
$$

"logically equivalent to"
$7 q \Rightarrow \neg p$ is the contrapositive of

$$
p=7 q
$$

is $\neg p \Rightarrow \neg q \equiv p=\neg q$? No.
what is the converse of $p \Rightarrow q$?

$$
\begin{aligned}
& q \Rightarrow p \\
& \text { Is } q \Rightarrow p \equiv p \Rightarrow q
\end{aligned}
$$

$p \Rightarrow q$
Claim If
n^{2} is even, tree
n is even.
(1) For contradiction, suppose $\neg(p \Rightarrow q)$
(2) $\neg(p=\neg q) \equiv p \wedge \neg q$
(3) proof of $7 q=77 p$
(4) Note mat we have $\neg p \wedge p$
(5) $\neg(p \Rightarrow q)$ is false, so $p=7 g$ is T

Proof For contradiction, suppose the Claim is falle. That is , suppose that
n^{2} is even but n is odd.
$\left.\begin{array}{l}n=2 k+1 \text { for } k \in \mathbb{Z} \\ n^{2}=(2 k+1)^{2} \\ n^{2}=4 k^{2}+4 k+1 \\ n^{2}=2\left(2 k^{2}+2 k\right)+1 \\ n^{2}=2 c+1 \text { for } c \in \mathbb{Z} \\ n^{2} \text { is odd } 1 p\end{array}\right\} \begin{aligned} & \text { assume } 2 q\end{aligned} \quad$ (3)
This contradicts prat ${ }^{p} n^{2}$ is even .(4) So our initial assumption that the claim is false is false, so me claim is true.

p	q	$p=7 q(p=>q)$	$\neg q$	$p \wedge \neg q$	
T	F	T	F	F	F
$\cdot T$	F	F	T	$-F$	T
F	T	T	F	F	F
$\cdot F$	F	T	F	T	F
\uparrow			1	\uparrow	

claim If n^{2} is even, then n is even.
Proof We give a proof by contrapositive. That is, we prove that
If n is odd, treen n^{2} is odd.
Assume n is odd. WTS n^{2} is odd.

$$
\begin{array}{ll}
n=2 k+1 \quad \text { for } k \in \mathbb{Z} & n \text { is odd } \\
n^{2}=(2 k+1)^{2} & \text { def. of odd } \\
n^{2}=4 k^{2}+4 k+1 \\
n^{2}=2\left(2 k^{2}+2 k\right)+1 \\
n^{2}=2 c+1 \text { for } c \in \mathbb{Z} \\
n^{2} \text { is odd }
\end{array}
$$

