Thu (De Morgan's) $\overline{A \cap B}=(\bar{A} \cup \bar{B})$
The complement of the intersection is the union of the complements.

Pf we will prove that

$$
\left.\begin{array}{l}
\overline{A \cap B} \subseteq(\bar{A} \cup \bar{B}) \\
(\bar{A} \cup \bar{B}) \subseteq \overline{A \cap B}
\end{array} \text { and }\right\} \Rightarrow \begin{aligned}
& \overline{A \cap B}=(\bar{A} \cup \bar{B}) \\
& x^{k} \text { iff } x^{*}
\end{aligned}
$$

$\widetilde{A \cap B} \subseteq(\bar{A} \cup \bar{B})$: we will show that if $x \in \widetilde{A \cap B}$, men $x \in(\bar{A} \cup \bar{B})$.
Suppose $x \in A \bar{\cap} B$. WIS $x \in \bar{A} \cup \bar{B}$.
$x \notin A \cap B$
by deft. of -
x not in boon A and B by deft. of \notin and \cap $X \notin A$ or $x \notin B$ by reasoning formalized later $x \in \bar{A}$ or $x \in \bar{B}$ by et. of -
$x \in \bar{A} \cup \bar{B} \quad$ bydet. of V

Now suppose $x \in \bar{A} \cup \bar{B}$. WTS $x \in \overline{A \cap B}$. $X \in \bar{A}$ or $x \in \bar{B}$ by definition of U. So we will prove by cages.
case $1: x \in \bar{A}$. wTS $x \in \overline{A \cap B}$.
$x \notin A$
$x \notin A \cap B$
$x \in \overline{A \cap B}$
by def. of -
since $A \cap B \subseteq A$
by def. of -
case 2: $x \in \bar{B}$. WTS $x \in \overline{A \cap B}$.
symmetric - replace $A \omega / B$ and vice versa.
Since the cases are exhaustive, the claim is proved.

