Functions

Def let A, B be sets.
$f: A \rightarrow B$ is a function if f assigns " from A to B " to each $a \in A$ a
single value $b \in B$ devoted fra).
Equivalently, f has 3 properties:

1) for each $a \in A, f(a)$ is defined.

2) For each $a \in A, f(a)$ does not produce 2 different outputs.
 only if

$$
b_{1}=b_{2}
$$

3) for each $a \in A, f(a) \in B$.

$$
f: A \rightarrow B
$$

A is the domain of f
B is the wdomain of f
The range of f is $\{f(a): a \in A\}$
range \leq codomain
let $A=\{1,2,3\}$
let $B=\{x, y\}$

$a \in A$	$b \in B$
1	$x=f(1)$
2	$y=f(2)$
3	$x=f(3)$

Props:
(1) $\forall a \in A, f(a) \vee$ is defined
(2) $\forall a \in A, f(a)$
does not produce $\sqrt{ }$
2 diff. out puts
(3) $\forall a \in A, f(a) \in B V$

- exactly 1 vow for every element of A
- some elements of B can have zero rows, or elements of B can have multiple rows
 domain: \mathbb{R}
codomain: \mathbb{R}
range: $\mathbb{R}^{\geqslant 0}$ (reals greater tran or equal to 0)

Intuitive "proof" of 3 properties:
(1) $\forall x \in \mathbb{R}, f(x)=x^{2}$
(2) $\forall x \in \mathbb{R}, f(x)=x^{2}$, a single value
(3) $\forall x \in \mathbb{R}, f(x) \in \mathbb{R}$, because $x^{2} \in \mathbb{R}$
ex $f: \mathbb{R} \rightarrow \mathbb{R}^{<0}, f(x)=x^{2}$
f is not a function.
Violates (3). Corsider $2 \in \mathbb{R} \cdot f(2)=$ $4 \notin \mathbb{R}^{<0}$
$\frac{e x}{} s: \underline{Z} \rightarrow \mathbb{Z}$ defined by $s(x)=x+1$ "Successor function"
domain, codomain: \mathbb{Z}
range: \mathbb{Z}
claim $s: \mathbb{Z} \rightarrow \mathbb{Z}$ is a function.
Proof We prove all 3 properties.

1) $\forall x \in \mathbb{Z}, s(x)$ is defined as $x+1$.
2) To show $\forall x \in \mathbb{Z}, s(x)$ does not produce 2 diff. out puts, we show that if $s(x)=a$ and $s(x)=b$, then $a=b$.
Assume $s(x)=a$ and $s(x)=b$.

$$
\begin{aligned}
& a=\frac{x+1}{a=b}, b=x+1 \quad \text { deft. of } s \\
& \text { substitution }
\end{aligned}
$$

3) WTS (want to show) $\forall x \in \mathbb{Z}, S(x) \in \mathbb{Z}$. $S(x)=x+1$, which is an integer because int + int $=$ int.

Examples from last time:

1. $g: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $g(a)=5$

Properties:

1) Defined $\forall x \in \mathbb{Z}$: yes. $g(x)=5$.
2) $\forall x \in \mathbb{Z}, g(x)$ maps to only one output.

Proof:
let $x \in \mathbb{Z}$ and $g(x)=a$ and $g(x)=b$.

$$
a=5, b=5
$$ deft. of $g(x)$

$$
a=b
$$ substitution.

3) $\forall x \in \mathbb{Z}, g(x) \in \mathbb{Z}$. Yes $-g(x)=5 \quad \forall x \in \mathbb{Z}$.

Domain: \mathbb{Z}
Codomain: $\frac{2}{2}$
Range: $\left\{\frac{5\}}{}\right.$
2. $E: \mathbb{Z} \rightarrow\{T, F\}$ defined by $E(x)= \begin{cases}T & x \text { is even } \\ F & x \text { is odd }\end{cases}$

Properties:

1) Defined $\forall x \in \mathbb{Z}$: yes.
2) $\forall x \in \mathbb{Z}, E(x)$ maps to only one out put.

Proof:
let $x \in \mathbb{Z}$. WTS that if $E(x)=a$ and $E(x)=b$, then $a=b$. we prove using cases.
case 1: x is even.
Let $E(x)=a$ and $E(x)=b$. Since x is even, $a=T$ and $b=T$, so $a=b$.
Case 2: x is oud.
let $E(x)=a$ and $E(x)=b$. Since x is odd, $a=F$ and $b=F$, so $a=b$.
Since the claim is true in all cases, the claim is true.
3) $\forall x \in \mathbb{Z}, E(x) \in\{T, F\}$. Yes.

Domain: \mathbb{Z}
Codomain: $\{T, F\}$
Range: $\{T, F\}$
3. $p: \mathbb{Z}^{\geq 0} \rightarrow \mathbb{Z}^{\geq 0}$ defined by $p(x)=x-1$

Not a function! Fails property 3 .
For $x=0 \in \mathbb{Z}^{\geqslant 0}, p(x)=x-1=0-1=-1 \notin \mathbb{Z}^{\geqslant 0}$.
4. $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $f(x)$ the number whose absolute value is x.

Not a function! Fails property 2.
For $x=5 \in \mathbb{Z}$, the number urose $a b s$. val. is 5 is both - 5 and 5.

Violates property 1 .
Consider $x=-5$. It's undefined which number has absolute value-s.

Another example:

$$
f: \mathbb{R} \rightarrow \mathbb{R} \quad f(x)=\frac{1}{x}
$$

1) $\forall x \in \mathbb{Z}, f(x)$ is defined.

Consider $x=0 . f(x)=\frac{1}{x}$ is not defined.

Det A function $f: A \rightarrow B$ is

1. onto (surjective) if
$\forall b \in B \quad \exists a \in A: f(a)=b$
$\equiv \forall b \in B$, something in A maps to it
$\exists b \in B, b$ shows up in at least 1
row of the table
\equiv codomain = range
ex: $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=x$
2. one-to-one (infective) if

$$
\forall a_{1}, a_{2} \in A, \quad a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)
$$

$\equiv \forall b \in B$, at most I thing in A maps to it
$\equiv \forall b \in B, b$ shows up in at most 1 row of the table?

$$
\begin{aligned}
& \text { ex } f: \mathbb{R} \rightarrow \mathbb{R}: f(x)= \\
& x^{2} \\
& f(-2)=4 \\
& f(2)=4
\end{aligned}
$$

3. a bijection if onto and $1: 1$
$\equiv \forall b \in B$, exactly 1 elf. of A maps

How do we prove that f is onto or $1: 1$?
onto
WTS $\forall b \in B \quad \exists a \in A: f(a)=b$.
\equiv If $b \in B$, then $\exists a \in A: f(a)=b$.
Step 1: Assume $b \in B$.
Step 2: Construct a s.t. $f(a)=b$.
$\underline{e x} s: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $s(x)=x+1$. claim: s is onto.
example: $b=7$. what is $a \in \mathbb{Z}$ st.

$$
\begin{aligned}
& f(a)=b=7 ? \\
& a=6, \quad f(a)=6+1=7 .
\end{aligned}
$$

Proof: Assume $b \in \mathbb{Z}$. Want to construct $a \in \mathbb{Z}$ sit. $f(a)=10$. Consider $a=b-1, a \in \mathbb{Z}$ since int -int $=$ int , and $s(a)=(b-1)+1$ by det. of s, so $s(a)=b$, as needed.
a/29

$$
A, B \text { sets }
$$

Review definitions: $\quad f: A \rightarrow B$
onto: everything in codomain is mapped to

$$
\forall b \in B: \exists a \in A: f(a)=b
$$

1:1
each domain value has a unique codomain value

$$
\forall a_{1}, a_{2} \in A:\left(a_{1} \neq a_{2}\right) \Rightarrow\left(f\left(a_{1}\right) \neq f\left(a_{2}\right)\right)
$$

warmup: $A=\{0,1,2\} \quad B=\{3,4\}$
Example 2.57: Sample onto/non-onto functions.
Let $A=\{0,1,2\}$ and $B=\{3,4\}$. Give an example of a function that satisfies the following description
if there's no such function, explain why it's impossible.

$$
1 \text { an onto function } f: A \rightarrow B
$$

$$
2 \text { a function } g: A \rightarrow B \text { that is not onto. }
$$

$$
\begin{aligned}
& f: A \rightarrow B \\
& f(0)=3 \\
& f(1)=3 \\
& f(2)=4
\end{aligned}
$$

3 an onto function $h: B \rightarrow A$.
(i) give an onto function

$$
f: A \rightarrow B
$$

(2) give a not onto function

$$
\begin{aligned}
g: A \rightarrow B \quad & f(a)=3 \\
& \forall a \in A
\end{aligned}
$$

(3) give an onto function $h: B \rightarrow A$

$$
\begin{aligned}
& f(3)=0 \\
& f(4)=1
\end{aligned}
$$

(or say or say
why cant)
not onto: WTS $\neg(\forall b \in B: \exists a \in A: f(a)=b)$ $\equiv \exists b \in B: \forall a \in A: f(a) \neq b$

$$
\begin{aligned}
& \text { claim: reals } \mathbb{Q}=\text { rations } \\
& f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2} \text { is onto. } T / F ?
\end{aligned}
$$

Proof:
let $b \in \mathbb{R}$ wis $\exists a \in \mathbb{R}: f(a)=b$. let $a=\sqrt{b}$.
$\rightarrow \sqrt{b} \in \mathbb{R}$ false
$b \in \mathbb{R}$

$$
\begin{array}{ll}
f(a)=(\sqrt{b})^{2} & \text { det of } f \\
f(a)=b & \text { set of }(5)^{2}
\end{array}
$$

is this proof valid? No!
Claim: f is not onto. codomain domain,
Proof: foo cider $b=-1 \in \mathbb{R}$. WTS $\forall a \in \mathbb{R}$,
$\forall a \in \mathbb{R}: f(a)=a^{2}$ def. of f
$\forall a \in \mathbb{R}: f(a) \geqslant 0 \quad$ property of 2
$\forall a \in \mathbb{R}: f(a) \neq b \quad b<0$
Note: $f(-1)=1$, so $f(-1)=-1$

Proving 1:1
wis $\forall a_{1}, a_{2} \in A: a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)$
Direct proof:

1. Assume $a_{1}, a_{2} \in A, a_{1} \neq a_{2}$
2. Show $f\left(a_{1}\right) \neq f\left(a_{2}\right)$

Contrapositive $\neg q \Rightarrow \neg p$

$$
\forall a_{1}, a_{2}: f\left(a_{1}\right)=f\left(a_{2}\right) \Rightarrow a_{1}=a_{2}
$$

1. assume $a_{1}, a_{2} \in A, f\left(a_{1}\right)=f\left(a_{2}\right)$
2. Show $a_{1}=a_{2}$
ex $S: \mathbb{Z} \rightarrow \mathbb{Z} \quad s(x)=x+1$
claim: S is $1: 1$
Proof: we prove the contrapositive. Suppose $a_{1}, a_{2} \in \mathbb{Z}$ and $s\left(a_{1}\right)=S\left(a_{2}\right)$.
WIS $a_{1}=a_{2}$

$$
\begin{gathered}
a_{1}+1=a_{2}+1 \\
a_{1}=a_{2}
\end{gathered}
$$

set. of S algebra

Not 1:1

$$
\neg(p \Rightarrow q) \equiv p \wedge \neg q
$$

$$
\begin{aligned}
& \neg\left(\forall a_{1}, a_{2} \in A: a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)\right) \\
& \left.\exists a_{1}, a_{2} \in A:\right\urcorner\left[a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)\right] \\
& \exists a_{1}, a_{2} \in A: \underbrace{a_{1} \neq a_{2}} \wedge f\left(a_{1}\right)=f\left(a_{2}\right)
\end{aligned}
$$

exists different a_{1}, a_{2} but $f\left(a_{1}\right)=f\left(a_{2}\right)$

$$
\text { ex } f: \mathbb{R} \rightarrow \mathbb{Z} \quad f(x)=x^{2}
$$

claim: f is not $1: 1$
pro of: by counter example. Let $a_{1}=2, a_{2}=-2$.

$$
\begin{aligned}
& f\left(a_{1}\right)=4 \\
& f\left(a_{2}\right)=4
\end{aligned}
$$

so $a_{1}=f a_{2}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$.

