Intro to Graphs
Def $A n$ undirected graph $G=(V, E)$ is a non- empty set of vertices (nodes) V and a set $E=\{\{u, v\}$: $u, v \in V\}$ of edges joining pars of nodes.
ex (A)

$$
\begin{aligned}
& V=\{A\} \\
& E=\varnothing
\end{aligned}
$$

(A)-(B)

$$
\begin{aligned}
& V=\{A, B\} \\
& E=\{\{A, B\}\}
\end{aligned}
$$

$G_{3}:$
(A) (B) (D)

$$
\begin{aligned}
& V=\{A, B, C, D\} \\
& E=\{\{A, B\},\{B, D\},\{B, C\}, \\
&\{A, C\}\}
\end{aligned}
$$

(A) (B)

$$
\begin{aligned}
& V=\{A, B\} \\
& E=\varnothing
\end{aligned}
$$

non-ex (A) all edges need 2 end points
Q A is this a graph? yes.

$$
V=\{A\}
$$

$$
\begin{aligned}
& E=\{\{A, A\}\} \\
= & \{\{A\}\}
\end{aligned}
$$

real-world examples

- Facebook friends alice -bob
nodes: people
edge: 2 people are Facebook friends
- blood relation ships

Q what property (or properties) would a mathematical relation need to have to be represented as an undirected graph?
ideas: symmetric

$a-b$
reflexive a^{2}

Self loops are equivalent wren divected or undirected

$$
\begin{array}{ll}
Q & C \\
C & C
\end{array}
$$

Deft A directed graph $G=(V, E)$ has a set of vertices V and edges $E \subseteq V \times V=\{(u, v)$: $u, v \in V 3$ so that edges are directed from
one vertex to another one vertex to anondr.
on a single set
Note: relations and directed graphs are true same!
$\underline{e x}$ (A)
$(A) \rightarrow(B)$

$$
\begin{aligned}
& V=\{A, B\} \\
& E=\{(A, B)\}
\end{aligned}
$$

\neq
(A) (B)

$$
\begin{aligned}
& V=\{A, B\} \\
& E=\{(B, A)\}
\end{aligned}
$$

ordered pair tuple list array undirected:

$$
\text { (A) (B) } \subseteq=\left\{\begin{array}{l}
\{\{, B\}\} \\
\text { set }
\end{array}\right.
$$

real-world example
Twitter followers
Det A graph is simple if it contains no parallel edges or self-loops.
parallel edges:
$(A) \rightarrow(B)$
(A) $-(B$
note that $A(B)$ has no parallel edges $(A, B) \neq(B, A)$
self-loops: A
(A)

Example 11.3: Self-loops and parallel edges.
Suppose that we construct a graph to model each of the following phenomena. In which settings do self-loops or parallel edges make sense?

1 A social network: nodes correspond to people; (undirected) edges represent friendships.
2 The web: nodes correspond to web pages; (directed) edges represent links.
3 The flight network for a commercial airline: nodes correspond to airports; (directed) edges denote flights scheduled by the airline in the next month.
4 The email network at a college: nodes correspond to students; there is a (directed) edge $\langle u, v\rangle$ if u has sent at least one email to v within the last year.

sent at least one email to p within the last year. self-loops network	no	para (ce
edges		
The web	yes	no
flight network	no	
email network	yes	yes

Let let $e=\{u, v\}$ or (u, v)

- nodes u, v are adjacent or neighbors
- in a directed graph, v is an out-neignbor of u and u is an in-neignbor of v
- u, v are endpoints of e
- UN v are incident to e
let v be a node in a simple undirected graph.

$$
\text { degree }(v)=\operatorname{deg}(v)=d(v)=\text { \#f of neighbors }
$$

$$
=\mid\{u \in V: \underbrace{\{v, u\} \in E\} \mid}_{\text {or }\{u, v\}}
$$

$$
\begin{equation*}
\operatorname{deg}(v)=4 \tag{1}
\end{equation*}
$$

for directed graphs,

$$
\begin{aligned}
\text { indeg }(v)=\# \text { of } \text { in } n \text {-neigubs } \\
\text { of } v
\end{aligned}
$$

Proofs about graphs

Discrete Structures (CSCI 246)

in-class activity
Names: \qquad

1. For each of the two graphs, label each node v with $\operatorname{deg}(v)$, and give $\sum_{v \in V} \operatorname{deg}(v)$, the total degree of the graph, and $|E|$, the number of edges in the graph.

$$
\begin{aligned}
& \sum_{V \in V} \operatorname{deg}(v)= 2+3+2 \\
&+3+1+1 \\
&= 12 \\
&|E|= 6 \\
&|E|=\frac{1}{2} \sum_{V \in V} \operatorname{deg}(v) \\
& 2|E|=\sum_{V \in V} \operatorname{deg}(v) \\
& \text { wedges } \\
& \text { total degree: } 18
\end{aligned}
$$

2. Can you give a conjecture about the relationship between $\sum_{v \in V} \operatorname{deg}(v)$ and and $|E|$?

Theorem 11.8 "Handshaking Lemma" let $G=(V, E)$ be a undirected graph.
Then simple

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

Proof let $G=(V, E)$ be an undirected graph. Notice that every edge is connected to exactly 2 nodes, meaning that it contributes 1 to the degree of 2 nodes.
So $\sum_{v \in V} \operatorname{deg}(v)=2|E|$.
Corollary, fact anat follows simply from $\begin{aligned} & \text { aprons theorem / umima }\end{aligned}$
Let $n_{\text {odd }}$ denote the number of nodes whose degree is odd. Then node is even.
Proof Aiming for a contradiction, suppose
n odd is odd.
Note that
even $=$ odd + even, a contradiction!

So mod must be even.

Def A complete graph or clique is an undirected graph $G=(V, E)$ s.t.

$$
\begin{equation*}
\forall u, v \in V: \underline{u \neq v} \Rightarrow\{u, v\} \in E \tag{b}
\end{equation*}
$$

is
(a)
a clique?

$$
\begin{equation*}
V=\{a, b, c\} \tag{c}
\end{equation*}
$$

No. Consider nodes $a, c . a \neq c$, but $\{a, c\} \in E$
is x a clique?
yes.
The clique on n nodes is denoted k_{n}. examples:
$k_{1} \cdot 0$
k_{3}

k_{4}

k_{5}

Q What is the relationship between $n=|V|$ and $m=|E|$ for k_{n} ?
Conjectures:

$$
\begin{aligned}
& m=(n-1)!\text { ? nope. } \\
& m=\sum_{i=1}^{n}(i-1)=0+1+2+3+\cdots+(n-1)
\end{aligned}
$$

recall: $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$
so $\sum_{i=1}^{n}(i-1)=\frac{n(n-1)}{2}=m$, tree $\#$ edges claim K_{n} has $\frac{n(n-1)}{2}$ edges.

Proof\#1 We give a way to count the edges and show prat it gives $\frac{n(n-1)}{2}$.
Suppose we have a complete graph En. Label its nodes $v_{1}, v_{2}, \ldots, v_{n}$. Starting with v_{1}, count the uncounted edges adjacent' to v_{1} and add the count to tree total.
V_{1} has $n-1$ uncounted edges
V_{2} has $n-2$ uncounted edges
V_{n-1} has 1 uncounted edge
V_{n} has 0 uncounted edges

$$
m=|E|=0+1+2+\cdots+n-1=\frac{n(n-1)}{2}
$$

Proof $\# 2$ let kn be the complete Note that graph on n nodes.
Note that every node has degree $n-1$.

$$
\sum_{v \in V} \operatorname{deg}(v)=\sum_{v \in V}(n-1)=n(n-1)
$$

But by the handshaking lemma,

$$
\begin{aligned}
\sum_{v \in V} \operatorname{deg}(v) & =2|E| \\
n(n-1) & =2|E| \\
\frac{n(n-1)}{2} & =|E|=m
\end{aligned}
$$

Proof $\# 3$ let $P(n)$ denote that k_{n} has $\frac{n(n-1)}{2}$ edges.
We prove $\forall n \geqslant 1: P(n)$ using induction over n.

Base case: $P(1)$ is true. That is, k_{1} has $\frac{1(1-1)}{2}=0$ edges. Yes, this is true'.

Inductive case: we wTS $\forall n \geqslant 2: P(n-1) \Rightarrow$ Assume $P(n-1)$. that is, assume

$$
k_{n-1} \text { has } \frac{(n-1)(n-1-1)}{2}=\frac{(n-1)(n-2)}{2}
$$

Now, wonsider an arbitrany dique kn. let ' K_{n} ' be the graph creadted by removing one node and all its edges.
Note tuat $n^{\prime}=K_{n-1}$. Note tuat $k_{n^{\prime}}=k_{n-1}$.
Goal: \#eages of $k_{n}=\frac{n(n-1)}{2}$.

$$
\begin{aligned}
\text { \#edges of } k_{n} & =\begin{array}{c}
\# \text { of edges }+\begin{array}{c}
2 \\
k_{n-1} \\
\text { have to edges we add to } \\
k_{n-1} \text { to get } k_{n}
\end{array} \\
\\
\end{array}=\frac{(n-1)(n-2)}{2}+n-1 \\
& =\frac{n^{2}-3 n+2}{2} \frac{2(n-1)}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{n^{2}-3 n+x+2 n-x}{2} \\
& =\frac{n^{2}-n}{2}=\frac{n(n-1)}{2}
\end{aligned}
$$

We've proved the inductive case. H

G by removing edge $\{u, v\}$

$$
\begin{aligned}
v \quad & \{\{u, v\},\{u, x\}\} \backslash\{\{u, v\}\} \\
& =\{\{u, x\}\} \\
x & \frac{\{\{u, v\},\{u, x\}\} \backslash\{u, v\}}{} \\
& =\{\{u, v\},\{u, x\}\} \times
\end{aligned}
$$

Last time: complete graphs/clique

real-world examples?

ex a family,
a tames $=$ blood relations
Deft A bipartite graph is a graph $G=(L \cup R, E)$ s.t. $L \cap R=\varnothing$ and $E \leqslant\{\{l, r\}: l \in L \wedge r \in \mathbb{R}\}$.
ex

$$
\begin{array}{ll}
A=B & V=\{A, B, C, D, E, F\} \\
E=C & L=\{A, E, F\} \\
F & R=\{B, C, D\}
\end{array}
$$

$$
\begin{gathered}
L \cap R=\varnothing \\
E \leq\{\{l, r\}: l \in L \wedge r \in R\}
\end{gathered}
$$

non-ex

Claim LeA G be an undirected graph. If G contains a triangle,
then it is not bipartite. tree it is not bipartite.
ex

$$
\neg(p \Rightarrow \neg q) \equiv p \wedge \neg q
$$

Proof Aiming for a contradiction, suppose that G contains a triangle and is bipartite.

Let v_{1}, v_{2}, v_{3}, be the nodes of the triangle. Without loss of generality, since we could relabel the node's, suppose mat $v_{1} \in L$ and $v_{2} \in R$. Since' $v_{2} \in R, v_{3} \in L$. But there is an edge from v. to v_{3} and both are in L, union contradicts that G is bipartite.

Deft A graph is planar if we can draw it in the plane w/out edge crossings.

note: graphs ave equal if reverts equal and edges equal
K_{n} is comple graph on n nodes is K_{4} planar?

$$
=
$$

K5 is not planar

complete bipartite graph $k_{3,3}$ complete bipartite graph on 3 nodes
$L \quad R$
is (b, d, f) a path?

$(a, b, d, f) \quad(a, b, c, f, d, \leq, e)$
Det A path in $G=(V, E)$ is a sequence of nodes $\left(u_{1}, u_{2}, \ldots, u_{x}\right)$
(1) $\forall i \in\{1,2, \ldots, k\}: u_{i} \in V$
$u_{1}=a$
$u_{2}=b$
$u_{3}=d$
$u_{4}=f$

- Is this deft. done?
- Are there things mat ft the def. but shouldn't be considered paths?
- How to fix?
(2) $\forall i \in\{1,2, \ldots, k-1\}:\left(u_{i}, u_{i+1}\right) \in E$

$$
(\underbrace{a_{1} b,}_{\left(u_{1}, u_{2}\right)}, d
$$

$$
(a, b) \in E
$$

A path is simple if all its nodes
are The length of a path is its $\#$ of edges. ugh of (a, b, d, f) is 3
in general, $k-1$.
The shortest path is the path of min. length between the nodes.

The distance dist (u, v) or $d(u, v)$ between u, v is tree length of the shortest path between u, V.

$$
d(a, f) ? \quad 2, \quad(a, b, f)
$$

A graph is connected if $\forall u, v \in V, \exists$ a path from u to v .
Deft A cycle $\left(u_{1}, u_{2}, \ldots, u_{k}, u_{1}\right)$ is a path of length $\geqslant 2$ from u, to n_{1} that does not traverse the same edge twice.
A cycle is simple if its nodes are distinct.

A graph is acyclic if it contains no cycles.
ex
 acyclic acyclic
non-ex
 not acyclic

 acyclic (bid, e,
 (a, b, c, a)

Lemma 11.33 if $G=(V, E)$ is an Undirected acyclic graph, then $\exists v \in V$ s.t. $\operatorname{deg}(v)=0$ or $\operatorname{deg}(v)=1$.

Proof we give a proof by construction via an algorithm that, given an undirected acyclic graph, finds a deg. O or deg. 1 vide.
alg:
Let u_{0} be any node in V

$$
\text { Let } i=0
$$

while current node u_{i} has unvisited neighbors:

$$
\begin{aligned}
& \text { Met } u_{i+1}=\text { any such unvisited } \\
& i=i+1
\end{aligned}
$$

return u_{i}
Let t be the node returned by alg on G. WTS either $\operatorname{deg}(t)=0$ or $\operatorname{deg}(t)=1$. case 1: $t=u_{0} . \dot{u}_{0} \quad \operatorname{deg}(t)=0$.
case 2: $t=u_{k}, k \geqslant 1$. We show $\operatorname{deg}(t)=1$.
Since t is last in $\left(u_{0}, u, \ldots, u_{k}\right)$, there is no edge from t to any unvisited node. If \exists edge from t to any other node u_{j} other tran u_{k-1}, it is in

$$
\left(u_{0}, u_{1}, \ldots, u_{k-2}\right)
$$

But tree $\left(u_{j}, \ldots, u_{k-1}, u_{k}, u_{j}\right)$ is a cycle. So no such edge exists, and t has only one edge back to u_{k-1}. So $\operatorname{deg}(t)=t$.
Def A tree is a ${ }^{n}$ undirected connected and acyclic.
ex
 Hedges

non-ex

(A forest)

Thy (chapter 11)
If $T=(V, E)$ is a tree, tron

$$
|E|=|V|-1
$$

Chm If $T=(V, E)$ is a tree, tree
(1) Adding an edge creates a cycle
(2) Removing an edge disconnects tue
graph.

