In Computer science, recursion is a common strategy for solving problems.
-take a problem instance

- split it into subproblems...
- ... until they are small
ex binary search
Problem: find an element in a sorted array.

base case: single element array.

Mathematical Induction is a proof technique mat is analogous to recursion.
ex to prove that $1+2+3+\cdots+n$

$$
P(n)=\left\{\begin{array}{c}
1+2+3+\cdots+n=\frac{n(n+1)}{2}: T \\
\neq
\end{array} f=\frac{n(n+1)}{2},\right.
$$

We prove that the formula holds for $n=0$ (base case) and that if it holds for $n \geqslant 1$, then it holds for $n+1$. some specific
Let P be a predicate concerning int $s \geqslant 0$. To 9 vive a proof by madnematical induction that $\forall n \geqslant 0$: $P(n)$, we prove 2 things:
(1) Base case: $P(0)$
(2) Inductive: $\forall n \geqslant 1$, prove that case $\overline{P(n-1)} \Rightarrow P(n)$
If we do (1) and (2), we 're proved $\forall n \geqslant 0$: $P(n)$ un?
(S. 1 in book)
ex Suppose we have proven $P(0)$ and
$P(3)$.
Proof WTS $P(3)$

Statement
$P(0)$

$$
P(0)=7 P(1)
$$

$P(1)$

$$
P(1) \Rightarrow P(2)
$$

$$
P(2)
$$

$$
\begin{equation*}
P(2) \Rightarrow P(3) \tag{3}
\end{equation*}
$$

reason assumption
plug in $n=1=$ to $P(n-1) \Longrightarrow P(n)$, assumption
because $P(0) \Rightarrow P(1)$, and we have $P(0)$ (nodus pones)
plug in $n=2$ to $p(n-1) \Rightarrow p(n)$
modus pones
plug in $n=3$ to $P(n-1) \Rightarrow P(n)$
modus ponens

Claim $\quad \forall n \geqslant 0, \sum_{\substack{n \\ n}}^{n} 2^{i}=2^{n+1}-1$

$$
2^{0}+2^{1}+2^{2}+\cdots+2^{n}=2^{n+1}-1
$$

HS
LRHS

$$
\begin{aligned}
& \begin{array}{cl}
\underset{0}{2 x} & \frac{n}{2^{0}=1} \\
& \frac{\text { RHo }}{2^{1}-1=2-1=1} \\
2^{0}+2^{1}=1+2=3 & 2^{1+1}-1=2^{2}-1=4-1
\end{array} \\
& 2 \quad \begin{array}{rlr}
2^{0}+2^{1}+2^{2} & = \\
1+2+4 & =7 \quad 2^{3}-1=8-1 & =7^{2}
\end{array}
\end{aligned}
$$

Steps to prove a " $\forall n \geqslant 0$: \qquad " statement using mathematical induction:
(1) clearly state $P(n)$ and rat your proof is by ate mathematical induction. And state the variable you are performing
induction over. induction over
(2) Prove $P(0)$ (base case)
(3) Prove $\forall n \geqslant 1: P(n-1) \Rightarrow P(n)$ (inductive case)
Claim: $\forall n \geqslant 0: \sum_{i=0}^{n} 2^{i}=2^{n+1}-1$
Proof:
(1) We define $P(n)$ to mean that

$$
\begin{aligned}
& \sum_{i=0}^{n} 2^{i}=2^{n+i}-1 \\
& (n)= \begin{cases}T & \text { if } \sum_{i=0}^{n} 2^{i}=2^{n+1}-1 \\
F & \text { otherwise }\end{cases}
\end{aligned}
$$

We show by induction that $\forall n \geqslant 0: P(n)$. We use induction over n.
(2) For the base case, we WTS P(0).

That is, WTS $\sum_{i=0}^{0} 2^{i}=2^{0}=2^{0+1}-1$ \uparrow

$$
1=2^{\prime}-1=2-1=1
$$

$L H S=R H S$.
(3) For the inductive case, we need to prove $\forall n \geqslant 1: P(n-1) \Rightarrow P(n)$.
That is, $\forall n \geqslant 1$:
CHS RHO

$$
\sum_{i=0}^{n-1} 2^{i}=2^{(n-1)+1}-1 \Rightarrow \sum_{i=0}^{n} 2^{i}=2^{n+1}-1 .
$$

Assume $P(n-1)$. $\begin{gathered}\text { inductive } \\ \text { nypotresis }\end{gathered}$

$$
\begin{aligned}
& \text { wIs } P(n) \\
& \text { LIS }=\sum_{i=0}^{n} 2^{i}=\sum_{i=0}^{n-1} 2^{i}+2^{n} \\
&=2^{(n-1)+1}-1+2^{n} \\
&=2^{n}-1+2^{n} \\
&=2^{n+1}-1
\end{aligned}
$$ inductive hyp.

algebra
$=$ RMS
So we have shown $P(n)$.
We've shown $P(0)$ and $P(n-1) \Rightarrow P(n)$, so by the principe of matre matical induction, $p(n)$ holds $\forall n \geqslant 0$.

Now- 4:53: worksheet \rightarrow turn in $w /$ 4:55 -end: do together your name

Recall the steps for proving a statement " $\forall n \geq 0$: something" using mathematical induction:
(1) Clearly state the property $\underline{P(n)}$, that you are using mathematical induction, and what variable you are doing induction over.
(2) Prove the base case: $P(0)$.
(3) Prove the inductive case: $P(n-1) \Rightarrow P(n)$.

In this activity, you will prove that $\forall n \geq 0$

Answer the following questions:

$$
\sum_{i=0}^{n} i=\frac{n(n+1)}{2} .
$$

- Do you believe the claim? I give you an example of it holding below. Give at least two more examples of n for which the claim holds by filling in two more rows of the table for different n.

n	$\sum_{i=0}^{n} i$	$\frac{n(n+1)}{2}$
1	$\sum_{i=0}^{1} i=0+1=1$	$\frac{1(1+1)}{2}=\frac{1(2)}{2}=1$

- What is the predicate $P(n)$ that you will prove holds $\forall n \geq 0$?

$$
P(n) \text { is } \sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

- What variable will you do induction over?

n

- What is the base case? (Don't just write $P(0)$; translate it into the specific $P(n)$ you defined above.)

$$
\sum_{i=0}^{0} i=\frac{0(0+1)}{2}
$$

- What is the inductive case? (Again, don't just write $P(n-1) \Rightarrow P(n)$; translate it into the specific

Now that you have answered the above questions, you are ready to write the full proof! The three steps are labeled in the proof for you to fill in.

Proof.
let $P(n)$ be $\sum_{i=1}^{n}=\frac{n(n+1)}{2}$.
we show that $\forall n \geqslant 0: \frac{l=0}{P(n) \text { using induction }}$ over n.
(2) For the base case, we prove that $\frac{P(0)}{n}$.

Let $n=0$. Then $\sum_{i=0}^{n} i=\sum_{i=0}^{0} i=0$. Also, $\frac{n(n+1)}{2}$

$$
=\frac{0(0+1)}{2}=0
$$

So $P(0)$ holds.
(3) For the inductive case, we prove that $\forall n \geq 1, P(n-1)=7 P(n)$.

Assume $n \geq 1$ and $P(n-1)$. That is, we

$$
\text { assume } \sum_{i=0}^{n-1} i=\frac{(n-1)(n-1+1)}{2}=\frac{(n-1)(n)}{2}
$$

We wis $P(n)$; tratis, that $\frac{\sum_{i=0}^{n} i=\frac{n(n+1)}{2} \text { CHS }}{\text { RUS }}$
by def. of Σ
$\frac{\text { subs. }}{\text { hypothesis }}$ inductive nypotresis

$$
\begin{aligned}
& =\frac{n^{2}-n}{2}+\frac{2 n}{2} \\
& =\frac{n^{2}-n+2 n}{2} R H S \quad \text { algebra } \\
& =\frac{n^{2}+n}{2}=\frac{n(n+1)}{2}, \text { so } P(n) \text { holds. }
\end{aligned}
$$

Because we showed $P(0)$ and $\forall n \geq 1: P(n-1) \Rightarrow P(n)$, by the principe of matremafical induction, $\forall n \geqslant 0: P(n)$.

