Welcome back!

Today:

- short lecture; don't worry about taking notes if it feels fast
- group activity

Tomorrow:

- continuation of group activity

A problem for a computer must be defined precisely and unambiguously by its input and desired output.

A problem for a computer must be defined precisely and unambiguously by its input and desired output.
ex: sort an array
input: array, way to compare elements
output: sorted array

A problem for a computer must be defined precisely and unambiguously by its input and desired output.
ex: sort an array
input: array, way to compare elements
output: sorted array
ex: compute the factorial of a positive integer input: a positive integer n
output: n!

A problem for a computer must be defined precisely and unambiguously by its input and desired output.
ex: sort an array
input: array, way to compare elements
output: sorted array
ex: compute the factorial of a positive integer input: a positive integer n
output: n!
note that we need the tools of discrete math to define these inputs and outputs precisely

A problem for a computer must be defined precisely and unambiguously by its input and desired output.
ex: sort an array
input: array, way to compare elements
output: sorted array
ex: compute the factorial of a positive integer input: a positive integer n
output: n!
A solution is some method of taking in an arbitrary input and computing an output with the desired properties defined by the problem

A problem for a computer must be defined precisely and unambiguously by its input and desired output.
ex: sort an array
input: array, way to compare elements
output: sorted array
ex: compute the factorial of a positive integer note that we need the tools of discrete math to define these inputs and outputs precisely input: a positive integer n
output: n!
A solution is some method of taking in an arbitrary input and computing an output with the desired properties defined by the problem; typically an algorithm, a sequence of steps you can perform to get from input to output.

A problem for a computer must be defined precisely and unambiguously by its input and desired output.
ex: sort an array
input: array, way to compare elements
output: sorted array
ex: compute the factorial of a positive integer
note that we need the tools of discrete math to define these inputs and outputs precisely input: a positive integer n
output: n!
A solution is some method of taking in an arbitrary input and computing an output with the desired properties defined by the problem; typically an algorithm, a sequence of steps you can perform to get from input to output.
sort(A):
let $S=$ the set of all permutations of A for x in S :
if x is sorted:
return x

A problem for a computer must be defined precisely and unambiguously by its input and desired output.
ex: sort an array
input: array, way to compare elements
output: sorted array
ex: compute the factorial of a positive integer input: a positive integer n
output: n!
A solution is some method of taking in an arbitrary input and computing an output with the desired properties defined by the problem; typically an algorithm, a sequence of steps you can perform to get from input to output.
sort(A):
let $S=$ the set of all permutations of A for x in S :
if x is sorted:
return x
algorithms are represented using pseudocode, a mix of precise/unambiguous notation and words
let $S=$ the set of all permutations of A
for x in S :
if x is sorted: return x
sort(A):
let $S=$ the set of all permutations of A
for x in S :
if x is sorted: return x

1) Does the algorithm work?
sort(A):
let $S=$ the set of all permutations of A
for x in S :
if x is sorted: return x
2) Does the algorithm work? future classes
sort(A):
let $S=$ the set of all permutations of A
for x in S :
if x is sorted: return x
3) Does the algorithm work? future classes
4) Does the algorithm work efficiently? this class: runtime
sort(A):
let $S=$ the set of all permutations of A
for x in S :
if x is sorted: return x
5) Does the algorithm work? future classes
6) Does the algorithm work efficiently? this class: runtime

How to measure runtime?
sort(A):
let $S=$ the set of all permutations of A
for x in S :
if x is sorted: return x

1) Does the algorithm work? future classes
2) Does the algorithm work efficiently? this class: runtime

How to measure runtime?
Idea \#1: implement the algorithm, run it, time it...

- depends on software, hardware, operating system, etc.
- implementation takes time and is error-prone
- how do we choose which inputs to run it on?

```
sort(A):
    let S = the set of all permutations of A
    for x in S:
        if }x\mathrm{ is sorted:
                return x
```

1) Does the algorithm work? future classes
2) Does the algorithm work efficiently? this class: runtime

How to measure runtime?
Idea \#1: implement the algorithm, run it, time it...

- depends on software, hardware, operating system, etc.
- implementation takes time and is error-prone
- how do we choose which inputs to run it on?

Idea \#2: find a function that expresses runtime in terms of input size

- runtime: number of primitive operations (arithmetic operations, logical operations, variable retrieval, variable assignment, etc.)

```
Algorithm 1
sum = 0
for i=1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```

```
Algorithm 1
sum = 0
for i=1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```

```
Algorithm 1
variable assignment
sum = 0
for i= 1 to n:
    sum = sum +1
for i= 1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```

```
Algorithm 1
variable assignment
sum = 0
for i= 1 to n:
    sum = sum +1
for i=1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```

```
Algorithm 1
variable assignment
sum = 0
for i= 1 to n:
    sum = sum +1
for i= 1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```

```
Algorithm 1
variable assignment
sum = 0
for i=1 to n:
for i=1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```

```
Algorithm 1
variable assignment
sum = 0
for i=0 to n:
    sum = sum + 1
for i=0 to n:
    sum = sum + 1
for i=0 to n:
    each loop:
    assign i
    variable access
arithmetic operation
variable assignment
sum = sum + 1
```

```
Algorithm 1
variable assignment
sum = 0
for i=1 to n:
    sum = sum + 1
for i= 1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```

```
Algorithm 1
variable assignment
sum = 0
for i= 1 to n:
    sum = sum +1
for i= 1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```

```
Algorithm 1
variable assignment
sum = 0
for i= 1 to n:
    sum = sum + 1
for i= 1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```

```
Algorithm 1
variable assignment
sum = 0
for i= 1 to n:
    sum = sum +1
for i= 1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```



```
Algorithm 1
variable assignment
sum = 0
for i=1 to n:
    sum = sum + 1
for i= 1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```

```
Algorithm 1
variable assignment
sum = 0
for i=1 to n:
    sum = sum +1
for i= 1 to n:
    sum = sum + 1
for i=1 to n:
    sum = sum + 1
```


Algorithm 1

$$
\text { sum }=0
$$

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{n} \text { : }
$$

$$
\text { sum }=\text { sum }+1
$$

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{n} \text { : }
$$

$$
\text { sum }=\text { sum }+1
$$

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{n} \text { : }
$$

$$
\text { sum }=\text { sum }+1
$$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $i=1$ to n :
sum = sum +1
for $\mathrm{i}=1$ to n :
sum = sum + 1
for $\mathrm{i}=1$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 2
sum $=0$
if $n<100$:
for $\mathrm{i}=1$ to n :

$$
\text { for } \mathrm{j}=1 \text { to } \mathrm{n} \text { : }
$$

sum = sum + n/3
else:

$$
\text { sum }=3 n
$$

Algorithm 1

sum $=0$

sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n :
sum = sum +1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 2
sum $=0$
if $n<100$
for $\mathrm{i}=1$ to n :
for $\mathrm{j}=1$ to n :

$$
\text { sum }=\text { sum }+n / 3
$$

else:

$$
\text { sum }=3 n
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n :
sum = sum +1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

for $\mathrm{i}=1$ to n :

$$
\begin{aligned}
& \text { for } \mathrm{j}=1 \text { to } \mathrm{n}: \\
& \\
& \text { sum }=\text { sum }+n / 3
\end{aligned}
$$

else:

$$
\text { sum }=3 n
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n :
sum = sum +1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n :
sum = sum +1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n :
sum = sum +1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n :
sum = sum +1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n :
sum = sum +1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n :
sum $=$ sum +1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum $=$ sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n :
sum = sum +1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum $=$ sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n :
sum $=$ sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n :
sum $=$ sum +1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n : sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

$$
\text { for } \mathrm{j}=1 \text { to } \mathrm{n}:
$$

$$
\text { sum }=\text { sum }+n / 3
$$

else:

$$
\text { sum }=3 n
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

else:
sum = 3n

$$
\begin{aligned}
& \text { for } \mathrm{j}=1 \text { to } \mathrm{n}: \\
& \\
& \quad \text { sum }=\text { sum }+n / 3
\end{aligned}
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

$$
\text { for } \mathrm{j}=1 \text { to } \mathrm{n}:
$$

$$
\text { sum = sum }+n / 3
$$

else:

$$
\text { sum }=3 n
$$

$$
\begin{aligned}
& 3+n(1+6 n) \\
& \quad=3+n+6 n^{2}
\end{aligned}
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

 sum \(=\) sum +1

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

$$
\text { sum }=3 n
$$

$$
\begin{aligned}
& \text { if } n<100: \\
& 3+n(1+6 n) \\
& \quad=3+n+6 n^{2} \\
& \text { if } n \geq 100: \\
& 3
\end{aligned}
$$

each inner loop: variable assignment variable access arithmetic operation variable access arithmetic operation

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

Algorithm 1

sum $=0$

variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

 sum \(=\) sum +1

Algorithm 1

sum $=0$
sum = sum +1
for $\mathrm{i}=0$ to n :
sum = sum + 1
for $\mathrm{i}=0$ to n :
sum = sum + 1
variable assignment
each loop:
assign i
variable access
arithmetic operation variable assignment

Algorithm 1's runtime:

$$
f_{1}(n)=12 n+1
$$

for $\mathrm{i}=1$ to n : for $\mathrm{j}=1$ to n : sum $=$ sum $+n / 3 \square\left\{\begin{array}{l}\text { var } \\ \text { arit }\end{array}\right.$ $f_{2}(n)= \begin{cases}3+n+6 n^{2} & \text { if } n<100 \\ 6 & \text { otherwise }\end{cases}$ else:

$$
\text { sum }=3 n
$$

Is Algorithm 1 or Algorithm 2 faster?

$$
f_{1}(n)=12 n+1
$$

$$
f_{2}(n)= \begin{cases}6 n^{2}+2 n+3 & \text { if } n<100 \\ 6 & \text { otherwise }\end{cases}
$$

60000 -
$-f_{1}(n)$
$-f_{2}(n)$
40000

20000

$f_{1}(n)=12 n+1$
$f_{2}(n)= \begin{cases}6 n^{2}+2 n+3 & \text { if } n<100, \\ 6 & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& f_{1}(n)=12 n+1 \\
& f_{2}(n)= \begin{cases}6 n^{2}+2 n+3 & \text { if } n<100 \\
6 & \text { otherwise }\end{cases}
\end{aligned}
$$

Algorithm 3
sum $=0$
for $\mathrm{i}=1$ to n :
sum = sum +3
variable assignment
each loop:
assign i
variable access
arithmetic operation
variable assignment

Algorithm 3's runtime:

$$
f_{3}(n)=4 n+1
$$

Is Algorithm 1 or Algorithm 3 faster?

$f_{1}(n)=12 n+1$
$f_{3}(n)=4 n+1$

$$
80000 \quad=-\begin{aligned}
& f_{1}(n) \\
& - \\
& f_{3}(n)
\end{aligned}
$$

$$
60000 \text { - }
$$

$$
40000 \text { - }
$$

$$
20000 \text { - }
$$

$f_{1}(n)=12 n+1$ $f_{3}(n)=4 n+1$

