N choose k examples
ex How many different 5-card hands are there wren drawn from a 52-card deck?
A clubs, A hearts, Jhearts, 2 diam., 4 clubs
we must choose s cards without replacement. Order doesn't matter.
So tree are

$$
\begin{aligned}
& \binom{52}{5}=\frac{52!}{5!(52-5)!}=\frac{52!}{5!(47!)} \\
& " 52 \text { choose } 5 \text { " }
\end{aligned}
$$

Why is it not $\underbrace{\downarrow} 52 \cdot 5^{\star} \cdot 5^{\alpha} \cdot 0^{\alpha} \cdot 9^{\downarrow}$? ?
what is this number?
it's $\#$ of hands if order matters
$\frac{\text { ex }}{}$ How many different 8-bit strings are there w/ rekactly 2 ones?
(recall: there are $2^{8} \quad 8$-bit strings) eg 11111111 repetition a lowed eg 11111110 diff from 01111111 , so orderer

Our 8-bit strings have 8 slots. we must choose 2 to be ones.

$$
\binom{8}{2}
$$

ex what is the expected \# of aces in a 13-card hand?
let $X=$ the number of aces in hand. so we want to compute $E[X]$.

$$
\operatorname{Recall} E[x]=\sum_{y \in\{0, \ldots, 4\}} y \cdot \operatorname{Pr}[x=y]
$$

wat is, for example, $\operatorname{Pr}[x=0]$?
\# of ways to get O aces
($\#$ of ways to draw 13 cards

$$
\binom{52}{13}
$$

$$
\binom{48}{13}
$$

what is $\operatorname{Pr}[X=1]$?
$\#$ of ways to get 1 ace \# of ways to draw 13 cards
\# ways to get 1 ace in 13 card
suits

- choose 7 ace, and ($\left.\begin{array}{l}4 \\ 1\end{array}\right)$
- choose 12 non-aces (48)
overall, $\binom{4}{1}\binom{48}{12}$
ex what is the probability of drawing a full house?

3 cords same rank
2 cards same rank
$2 h, 2 d, J s, J h, J c<$ \# of ways to get a full house $\#$ of ways to draw s cards
$G\binom{52}{5}$
choose chooses
1 rank ils

$$
\underbrace{\binom{13}{1}\binom{4}{3}}_{\text {group of } 3} \frac{\binom{12}{1}\binom{4}{2}}{\text { group of } 2}
$$

$$
\binom{13}{1}\binom{4}{2}\binom{12}{1}\binom{4}{3}
$$

