claim (4.16) If $|x|+|y| \neq|x+y|$ then $x y<0$.
ex

x	y	$\|x\|+\|y\|$	$\|x+y\|$	$x y$	
-2	3	5	1	-6	TV
2	3	5	5	6	FF

Pf we prove the contrapositive. That is, if $x y \geqslant 0$ then $|x|+|y|=|x+y|$. suppose $x y \geqslant 0$. wIS $(x|+|y|=| x+y)$.
we prove using cases.

$$
\begin{array}{cc}
\text { Case 1: } x, y \geqslant 0 & \\
|x|+|y|=x+y & \text { by et of } 11, x \geqslant 0, \\
x+y=|x+y| & \text { bc } x, y \geqslant 0 \Rightarrow x+y \geqslant 0, \\
\text { case 2: } x, y \leqslant 0 . & \text { Set of } 11 \\
|x|+|y|=-x+-y & \text { deft. of } 11, x, y \leqslant 0 \\
-x-y=-(x+y) & \text { algebra } \\
-(x+y)=|x+y| & \text { bc } x, y \leqslant 0 \Rightarrow x+y \leqslant 0, \\
& \text { get of } 11
\end{array}
$$

Claim All prime numbers are odd.
三 If p is prime, men p is odd.
Disproof by counter example: 2 is prime but 2 is not odd.
claim. Let $p \geqslant 3$. If p is prime, then p is odd.

Pf we prove the contrapositive. That is, we ext $p \geqslant 3$, and we show that if p is even, then p is not prime.
let $p \geqslant 3$ and p even.
phase 2 as a divisor given
p is not prime
$p \neq 2$, so p has a divisor not equal to itself or 1 .

