$\stackrel{\text { domain }}{\downarrow}$ codomain
let $f: A \rightarrow B$ be a function.
fonto:
" "there exists"
$\frac{\forall b \in B:}{\hat{A}} \exists a \in A: f(a)=b$.
"for all"
f 1:1: $\rightarrow \forall a_{1} \in A, \forall a_{2} \in A$

$\forall a_{1}, a_{2} \in A: a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \Rightarrow f\left(a_{2}\right)$

recall
set builder notation : $\{x \in \mathbb{Z}: 2 \mid x\}$
"such mat"
"for integers m, n, if
m is div. by 3 or n is div. by 3 , then $m n$ is div. by $3^{\prime \prime}$
let $D(x)$ be " x is div. by 3 "

$$
\begin{aligned}
& \forall m \in \mathbb{Z}, \quad \underline{\forall n \in \mathbb{Z}}: \frac{D(m) \vee D(n)}{\Rightarrow D(m n)} \\
& \forall b \in B: \exists a \in A: f(a)=b . \\
& \forall b \in B O \exists a \in A: f(a)=b
\end{aligned}
$$

Note:
let $f: A \rightarrow B$ be a function.

$$
\begin{aligned}
& f: A \rightarrow B \text { is onto } \Rightarrow \quad|A| \geqslant|B| \\
& f: A \rightarrow B \text { is } 1: 1 \Rightarrow|A| \leq|B| \\
& f: A \rightarrow B \text { is } \\
& \quad \text { a bijection }
\end{aligned}
$$

Theorem 9.13 (Pigeonhole Principle,
PHP) Let A, B be sets $f: A \rightarrow B$ be a function.

If. $|A|>|B|$, then there are distinct $a_{1}, a_{2} \in A$ such that $f\left(q_{1}\right)=f\left(a_{2}\right)$.

1) Write a fully quantified statement expressing)
2) How does this relate to

$$
\begin{aligned}
& ? \\
& 1, a_{2} \in A= \\
& \left.-a_{2}\right) \wedge f\left(a_{1}\right)=f\left(a_{2}\right)
\end{aligned}
$$

$$
\exists a_{1}, a_{2} \in A,\left(a_{1} \neq a_{2}\right):|A|>|B| \Rightarrow f\left(a_{1}\right)=
$$

$$
f\left(a_{2}\right)
$$

"There exist different a_{1}, a_{2} from A such mat if $|A|>|B|$, tran $f\left(a_{1}\right)=f\left(a_{2}\right)^{\prime \prime}$
2) $p \Rightarrow q \quad \neg q \Rightarrow \neg p$

$$
\begin{aligned}
& f: A \rightarrow B \text { is }|: 1 \Rightarrow| A|\leq|B| \\
& |A| B \mid \Rightarrow f: A \rightarrow B \text { is not } \mid: 1
\end{aligned}
$$

Proof of PHP:
The PHP is the contrapositive of

$$
f: A \rightarrow B \text { is } 1:|=|A| \leq|B| .
$$

The "pigeon" way of thinking of the PHP: Suppose you have A of pigeons

$$
|A|=n+1
$$

B, set of cubbies, $|B|=n$
Each pigeon from A flies into cubby
$f(a)=$ pigeon a 's cubby.

$$
\geqslant 2 \text { pigeons }
$$

shave a cubby.

Claim among 13 people, at least 2 shave the same' birl month.

Proof
let A (pigeons) be the set of B people. let B (pigeonholes) be the set of 12 months.
let $f: A \rightarrow B \quad f(a)=a$'s birth month. is f a function?

1) each a has a birtin month
2) each a has only 1 birth month
3) each birth month is in set of 12 months.
Note that $\left.\begin{array}{l}|A|=13 \\ |B|=12\end{array}\right\} \Rightarrow|A|>|B|$.
Thus, by PHP, $\exists a_{1}, a_{2} \in A$ s.t. $a_{1} \neq a_{2}$ and $f\left(a_{1}\right)=f^{\prime}\left(a_{2}\right)$.
That is, there are 2 distinct people a_{1} and at sucur that their bite months $f\left(a_{1}\right)$ and $f\left(a_{2}\right)$ are me same.
