Predicates
So far, our propositions:

$$
S \text { is even }
$$

$$
P
$$

Det A predicate is a Boolean-valued function $P: U \rightarrow\{T, F\}$ for a set U. That is, a rule or property that a particular entity may or may not have. ex

$$
\begin{aligned}
& \text { is Even }(n):= \begin{cases}T & \text { if } n \text { is even } \\
F & \text { if } n \text { is odd }\end{cases} \\
& n \in \mathbb{Z} \\
& \text { is Subset }(A, B):= \begin{cases}T & \text { if } A \subseteq B \\
F & \text { if } A \nsubseteq B\end{cases} \\
& A, B \text { sets } \\
& \text { is } \operatorname{Rat}(x):= \begin{cases}T & \text { if } \\
F \in \mathbb{Q} \\
F & \text { if } \\
x \notin \mathbb{Q}\end{cases}
\end{aligned}
$$

on its own, a predicate $P(x)$ has
no truth value. The value x is unbound.
is Even (n)

$$
n \in \mathbb{Z}
$$

can make a proposition by:

1) apply to specific entity
let $m=5$.
is Even (m) F
is Even (6) T
2) Use quantifiers

- For all integers n, is Even (n).
T There exists n such that n is even
Universal quantifier \forall "for all"
$\forall n \in \mathbb{Z}$: is Even (n)
$\forall x \in S: P(x)$
"for all x in $S, P(x)$ is true"
T if $P(x)$ evaluates to T for all $x \in S$.
Existential quantifier \exists "there exists"

$$
\exists x \in S: P(x)
$$

"there exists an x in S such that $P(x)$ is T if $P(x)$ evaluates to T for some $x \in S$.
Examples of propositions $w /$ quantifiers:
$\forall n \in \mathbb{Z}: i \operatorname{seven}(2 n) T$
$\forall n \in \mathbb{Z}:$ is $\operatorname{Even}\left(n^{2}\right) \Rightarrow \operatorname{is} \operatorname{Even}(n) T$
$\exists n \in \mathbb{Z}:$ is Prime $(n) T$
$\forall n \in \mathbb{Z}$: isPrime $(n) F$ rationals
"there exist real numbers x and y such that x times y is rational and not both x and y ave rational"
T
how to show \exists is true? Give one!

$$
x=\sqrt{2}, y=\sqrt{2} . \quad x y=\sqrt{2} \cdot \sqrt{2}=\sqrt{4}=2
$$

Precedence rules:

- \forall, \exists have highest precedence
- () to override or for (lanty
ex

$$
\begin{aligned}
\forall x \in S: P(x) & \Rightarrow \exists y \in S: P(y) \\
(\forall x \in S: P(x)) & \Rightarrow(\exists y \in S: P(y)) \\
\forall x \in S:(P(x) & \Rightarrow \exists y \in S: P(y))
\end{aligned}
$$

All students do not pay full tuition. leA S be the set of all students. let $P(x)$ be "x pays fl l tuition"

$$
\forall x \in S: \neg p(x)
$$

no student pays full tuition. \&

$$
\begin{array}{r}
\exists x \in S: \neg P(x) \\
\equiv \\
\neg(\forall x \in S: P(x))
\end{array}
$$

Not all students pay full tuition 5

If n^{2} is even, treen n is even.

$$
\forall n \in \mathbb{Z}: \text { is Even }\left(n^{2}\right) \Rightarrow \text { is Even }(n)
$$

Predicates

$$
\begin{aligned}
& P(x) \quad x \in U \\
& V \downarrow \\
& T \quad F \\
& \text { if } \frac{x \% 2==0}{d_{0} \text { something }}
\end{aligned}
$$

$$
\text { is Even }(x)
$$

$\vee \downarrow \quad x \in \mathbb{Z}$
while $(x>2)$ \{ greater than 2 (x) do something $x \in \mathbb{R}$

Quantifiers
\forall "for all" universal quantifier $\forall x \in S: P(x)$
"for all x in $S, P(x)$ is T "
"there exists" existential quantifier $\exists x \in S: P(x)$
"there exists x in S such treat $P(x)$ is T "

Det A fully quantified expression is a theorem if it is T for even g possible meaning of its predicates and sets.

$$
\forall S
$$

Thm (3.39) let S be any set.

$$
\forall x \in S:[P(x) \vee \neg P(x)] \quad \forall P
$$

ex $P(x)=$ is Even $(x), S=\mathbb{Z}$

$$
\forall x \in \mathbb{Z}:[\operatorname{isE} \operatorname{ven}(x) \vee \neg i \operatorname{seven}(x)]
$$

Non-treoreun (3.40)

$$
\left[\forall x \in S^{F}: P(x)\right] \vee\left[\forall x \in S^{F}: \neg P(x)\right]
$$

note: implied $\forall S, \forall P$
Dis proof that $~$ is a theorem by counter example.

$$
\begin{aligned}
& S=\{1,2\} \\
& P=\text { is Even }(x) \\
& {[\forall x \in\{1,2\}: \text { is Even }(x)] \cup\left[\begin{array}{l}
\forall x \in\{1,2\}: \\
\downarrow \\
\text { is Even }(x)]
\end{array}\right.} \\
& \begin{array}{c}
\downarrow \\
\text { consider } x=1
\end{array} \\
& \\
& \text { Consider } x=2
\end{aligned}
$$

Det Fully quantified expressions φ, ψ are logically equivalent ($\varphi \equiv \psi, \varphi \Leftrightarrow \psi$) if " $\rho \Leftrightarrow \psi$ " is a theorem.

Theorem (3.41)

$$
\underbrace{\urcorner[\forall x \in S: P(x)]}_{\varphi} \Leftrightarrow \underbrace{[\exists x \in S: \neg P(x)]}_{\psi}
$$

Theorem (3.42)

$$
\urcorner[\exists x \in S: Q(x)] \Leftrightarrow[\forall x \in S:\urcorner Q(x)]
$$

Theorem $\forall x \in \varnothing: P(x) \quad " P(x)$ is vacuoustrue"

