Randomness + probability uses in C 5 :

- randomized al gontinms
- data structures using randomness
- modeling real-word phenomena

But first, we need to learn to count!
Sum rule: if $A \cap B=\varnothing$, treen $|A \cup B|$

$$
=|A|+|B| .
$$

Product rule: The number of pairs (x, y) with $x \in A, y \in B$ is $|A| \cdot|B|$.

$$
|A \times B|=|A| \cdot|B|
$$

ex A restaurant has 2 cuncenspecials.
(1) Soup or salad
(2) soup and salad

If $A=$ set of soups $=\{$ chicken noodle,...\}
$B=$ set of salads $=\{$ caesar, ... \}
How many possibilities are mere for
(1): $|A \cup B|=|A|+|B|$
(2): $|A \times B|=|A| \cdot|B|$

More general product rule:

$$
\left|A_{1} \times A_{2} \times A_{3} \times \cdots \times A_{*}\right|=\left|A_{1}\right| \cdot\left|A_{2}\right| \cdot\left|A_{3}\right| \cdot \cdots\left|A_{k}\right|
$$

ex How many 32-bit string are there?

$$
\underbrace{010 \cdots 001}_{32}
$$

2^{32} by the generalized product rule.

$$
\begin{aligned}
& 1 \underbrace{\{0,1\} \times\{0,1\} \times\{0,1\} \times \cdots \times\{0,1\}}_{32 \text { times }} \\
& =\underbrace{\{\{0,1\}|\cdot|\{0,1\}|\cdot|\{0,13|\cdots|\{0,1\} \mid}_{32 \text { times }}=2^{32}
\end{aligned}
$$

ex How many MAC addresses are there?
(you don't need to evaluate the valve)

$$
16^{12}
$$

$$
\underbrace{12: A C: D 9: 03: F 9: 7 B}_{12 \text { digits }}
$$

$$
\frac{\{\{0,1,2, \cdots, 9, A, B, \cdots, F\}, x}{\{0,1,2, \cdots, 9, A, B, \cdots, F\} x}
$$

$$
\cdots 1
$$

per pair: 16^{2} possibilities.

$$
\left(16^{2}\right)^{6}=16^{12}
$$

Inclusion- Exclusion rule:

$$
|A \cup B|=|A|+|B|-|A \cap B| \rightarrow 0 \text { if empty }
$$

ex let $O=\{1,3,5,7,9\}$ and $P=\{2,3,5,7\}$ What is IOUPI'?

$$
\begin{aligned}
& |O \cap P|=|\{3,5,7\}|=3 \\
& |O \cup P|=|0|+|P|-|O \cap P|=5+4-3=6
\end{aligned}
$$

(double check: $O \cup P=\{1,2,3,5,7,9\}$)

$$
0123,7980,0111
$$

ex How many invalid PINS are there? hint: it's btwn 150 and 250
let S denote the set of Dins starting w/ 3 repeated digits.

$$
\operatorname{sg} \begin{aligned}
& \pi 10 \\
& 2223 \\
& 3332
\end{aligned} \quad|S|=10^{2}=100
$$

Let E denote the set oi PINs ending w/ 3 repeated digits.
$\operatorname{eg} 0111 \quad|E|=100$
$S \cap E:$ all digits same

$$
|S \cap E|=10
$$

$$
\begin{aligned}
|S \cup E|=|S|+|E|-|S \cap E| & =100+100-10 \\
& =190
\end{aligned}
$$

Deft Given some random process, the sample space S is the set of all possible outcomes.
A probability function $\operatorname{Pr}: S \rightarrow \mathbb{R}$ describes the fraction of tree time that $S \in S$ occurs.

$$
\begin{array}{ll}
\rightarrow \sum_{s \in S} \operatorname{Pr}[s]=1 \checkmark & f: A \rightarrow B \\
\rightarrow \operatorname{Pr}[s] \geqslant 0 \quad \forall s \in S \quad \checkmark & \\
& \\
& \operatorname{Pr}[s]=b
\end{array}
$$

ex fair
flipping a coin

$$
S=\{\text { heads, tails }\}
$$

$$
\begin{aligned}
\operatorname{Pr}[\text { heads }] & =0.5 \\
\operatorname{Pr}[\text { tails }] & =0.5 \\
\sum_{s \in S} \operatorname{Pr}[s] & =\operatorname{Pr}[\text { heads }]+\operatorname{Pr}[\text { tails }]=0.5+0.5=1
\end{aligned}
$$

drawing a card

$$
\begin{aligned}
& S=\{2 \text { clubs, }\} \text { clubs, } \ldots \\
& \operatorname{Pr}[s]=\frac{1}{5} 2 \quad \forall s \in S
\end{aligned}
$$

flipping 2 fair coins

$$
S=\{(H, H),(H, T),(T, H),(T, T)\}
$$

each has $\operatorname{Pr}[\mathrm{s}]=0.25$
ex LeA $S=\{0,1,2, \ldots, 7\}$. Choose from of by flipping 7 coins and counting H

$$
\begin{array}{ll}
H H H H H H H \rightarrow 7 & \operatorname{Pr}[7]=0.0078 \\
& \operatorname{Pr}[4]=0.2734
\end{array}
$$

Deft A set of outcomes is called an event.

$$
E \subseteq S, \operatorname{Pr}[E]=\sum_{S \in E} \operatorname{Pr}[S]
$$

$\underline{e x}$
When flipping 2 wins, the probability
that at lease one is heads is

$$
\begin{aligned}
& 0.25+0.25+0.25=0.75 \\
& S=\{(H, H),(H, T),(T, H),(T, T)\} \\
& E \subseteq S \\
& E=\{(H, H),(H, T),(T, H)\}
\end{aligned}
$$

when drawing 1 card form a 52-card deck, tue prob. that it is an ace
is $4 / 52$
Theorem 10.4 . (Properties of event probabilities
let S be a sample space and $A \subseteq S$, $B \subseteq S$ be events. Let $\bar{A}=S-A$.

$$
\begin{array}{ll}
\operatorname{Pr}[S]=1 & \operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A] \\
\operatorname{Pr}[\phi]=0
\end{array}
$$

ex When drawing 1 card, what is the probability that it's not an ace?
$S=\{$ all cards\}
$A=\{A$ clubs, A spades, A hearts, A diamonds $\}$

$$
\operatorname{Pr}[\bar{A}]=1-\operatorname{Pr}[A]=1-4 / 52=48 / 52=24 / 26=12 / 13
$$

Tree Diagrams in Probability

- internal nodes represent random choices, labeled w / probability of each outcome

flip 2 coins

flip 1 fair coin. If H, flip a and fair coin. If T, flip a coin w/ 0.75 prob. of T.

$$
\operatorname{Pr}[(\tau, \tau)]=\frac{3}{8}
$$

$\operatorname{Pr}[$ at least one $H]=1-\frac{3}{8}$
flip
fairco:n

Deft A permutation of a set S is a engin isl sequence of elements of S with no repetitions.
ex $S=\{1,2,3,4\} \quad \begin{aligned} & \downarrow, 2,3,4) \quad \vee \\ & (1,2,3,4) \quad \\ & 2,4,3,1) \\ & 2,2,4,1)^{2} \\ & 1,3,4) x\end{aligned}$
 is number of permutations of s
Proof sketch \#|: by product rule.

$$
|A \times B|=|A| \cdot|B| \text {. }
$$

let S_{1} be S-firstchoice, S_{2} be $S_{1}-2$ nd choice choice'
\cdots, all the way to S_{n-1}.

$$
\begin{aligned}
& \left|\underline{S} \times \underline{S}_{1} \times \underline{S}_{2} \times \cdots \times \underline{S_{n-1}}\right|=|S| \cdot\left|S_{1}\right| \cdot\left|S_{2}\right| \cdots\left|S_{n-1}\right| \\
& \left(\uparrow, \uparrow_{1}, \uparrow, \cdots, \uparrow\right)=n(n-1)(n-2) \cdots(1) \\
& \text { frogs from nom } s_{s_{2}} \text { comes }_{\text {from }}^{s_{n-1}}=n \text { ! }
\end{aligned}
$$

Proof sketun \#2: w/ a tree diagram choose ac choose from $\underset{\substack{\text { cha }}}{\substack{\text { ch -1 } \\ \text { choices }}}$ from $n!$ leaves

Det let n, k be non-negative integers.

$$
\begin{aligned}
& \binom{n}{k}=\frac{n!}{k!(n-k)!} \\
& \text { " } n \text { chooser" }
\end{aligned}
$$

the number of ways to choose k elements from a size n set where order does not matter.

Expected values
Ask questions like:
how many times do we have to flip a win to get 100 heads?
def A random variable X assigns a numerical valve to every outcome of a sample space.

$$
X: S \rightarrow \mathbb{R}
$$

ax Suppose we flip a coin 3 times.

$$
\begin{aligned}
& S=\{H, T\}^{3}=\{(H H H), \ldots\} \\
& \operatorname{Pr}[S]=\frac{1}{8} \quad \forall S \in S
\end{aligned}
$$

Let x be $\#$ of heals of an outcome
y be $\#$ of consecutive T

$$
\begin{aligned}
& X(H H H)=3 \\
& Y(H H H)=0
\end{aligned}
$$

Deft The expectation of a random variable X ' denoted $E[x]$, is the average value

$$
\begin{aligned}
E[X] & =\sum_{s \in S} X(s) \cdot \operatorname{Pr}[s] \\
& =\sum_{\exists s \in s:} y \cdot \operatorname{Pr}[X=y] \\
y & =X(s)=y
\end{aligned}
$$

ex Counting heads in coin flips
$X=\#$ of heads
intuition says: expected \# heads is 1.5
The following added after class...
let's compute.

$$
\begin{aligned}
& \text { expected } \# \text { heads }=E[X]=\sum_{s \in S} X(S) \cdot \operatorname{Pr}[s] \\
& =X(H H H) \cdot \operatorname{Pr}[H H H]+X(H H T) \operatorname{Pr}[H H T]+ \\
& X(H T H) \cdot \operatorname{Pr}[H T H]+X(H T T) \operatorname{Pr}[H T T]+ \\
& X(T H H) \operatorname{Pr}[T H H]+X(T H T) \operatorname{Pr}[T H T]+X(T T H) \operatorname{Pr}[T H T]
\end{aligned}
$$

$$
\begin{aligned}
&+X(T T T) \operatorname{Pr}[T T T] \\
&= 3 \cdot \frac{1}{8}+2 \cdot \frac{1}{8}+2 \cdot \frac{1}{8}+1 \cdot \frac{1}{8}+2 \cdot \frac{1}{8}+1 \cdot \frac{1}{8}+1 \cdot \frac{1}{8} \\
&+0 \cdot \frac{1}{8}=\frac{12}{8}=1.5 \text {, so the del. matches } \\
& \text { our intuition. }
\end{aligned}
$$

Now let's compute E $[X]$ using the equivalent formulation above.

$$
\begin{aligned}
& E[X]=\sum_{y} y \cdot \operatorname{Pr}[x=y]=0 \cdot \operatorname{Pr}[X=0]+ \\
& 1 \cdot \operatorname{Pr}[X=1]+2 \cdot \operatorname{Pr}[X=2]+3 \cdot \operatorname{Pr}[X=3] \\
& =0 \cdot \frac{1}{8}+1 \cdot \frac{3}{8}+2 \cdot \frac{3}{8}+3 \cdot \frac{1}{8}=\frac{12}{8} \text { also. }
\end{aligned}
$$

Now, let's see some examples of choosing k items from n.
ex
How many different 5 -card hands are trave when drawn from a 52-card deck?
we must choose 5 cards but order doesn't matter. So frise are

$$
\binom{52}{5}=\frac{52!}{5!(47!)}=\frac{52 \cdot 31 \cdot 50 \cdot 49 \cdot 48}{5!}
$$

(note: you don't need to evaluate something like $\binom{52}{5}$ in this class, you can leave
ex (9.41 in book)
How many different 8 -bit strings?
are trine wilexactly 2 ones y ? are trave $w / e x a c t l y ~ 2$ ones we can think of his as choosing two indices out of 8 to equalone.

$$
\binom{8}{2}
$$

Now let's see a problem about expectation mere combinations come into play.
ex (10.40 in book)
What is the expected number of aces in a 13-card hand?
Let $X=$ the number of aces in a 13 -card hand. So we want to compute $E[x]$.
Recall that $E[X]=\sum_{y} y \cdot \operatorname{Pr}[X=y]$.
Since X (a 13 -card hand) can equal $0,1,2,3$, or 4, we need to compute $\operatorname{Pr}[X=0], \operatorname{Pr}[X=2]$, $\cdots, \operatorname{Pr}[X=4]$.
What is, for example, $\operatorname{Pr}[X=0]$?
Since a probability is the fraction of the time an outcome occurs, it's
\# of ways to get 0 aces
\# of ways to draw 13 cards
let's think about \# ways to draw 13 cards first. Since we are choosing 13 cards from 52 , this is $\binom{52}{13}$.

Now let's think about the $\#$ ways to get 0 aces. That's just the way to choose deck, $50\binom{48}{13}$.
So overall, $\operatorname{Pr}[X=0]$ is $\frac{\binom{48}{13}}{\binom{52}{13}}$.
Now let's do $\operatorname{Pr}[X=1]$. Again, the denominator is $\binom{52}{13}$.
For the numerator, we know that we must choose one ace and 12 non-aces, so we have $\binom{4}{1}\binom{48}{12}$ choices - $\binom{4}{1}$ invoices for the suit of the ace and $\binom{48}{12}$ choices for the remaining 12 cards.

The same logic applies for $X=2, X=3$, and $X=4$, so overall we have

$$
E[X]=\sum_{i=0}^{4} i \cdot \operatorname{Pr}[X=i]=
$$

$$
\begin{aligned}
& 0 \cdot \frac{\binom{4}{0}\binom{48}{13}}{\binom{52}{13}}+\frac{1 \cdot\binom{4}{1}\binom{48}{12}}{\binom{52}{13}}+2 \cdot \frac{\binom{4}{2}\binom{48}{11}}{\binom{52}{13}} \\
& +3 \cdot \frac{\binom{4}{3}\binom{48}{10}}{\binom{52}{13}}+4 \cdot \frac{\binom{4}{4}\binom{48}{10}}{\binom{52}{13}}
\end{aligned}
$$

union does end up evaluating to 1 .
Another example: what is the probability
of drawing a full house? of drawing a full house? Afoul housed is 3 cards of one rank and 2 cards of anotren rank. For example,
2 hearts, 2 diamonds, J spades, J hearts,
Jclubs
is a full house.
So we need to compute \# ways to get full house
\#ways to draw
5 cards.
we know \# ways to draw 5 cards is $\binom{52}{5}$ from above.
What is \# ways to get a fill house?
we can trunk of a full house as an element of the following set:

By the product rule, the size of this set is the product of the sizes of prese sets.
Or, equivalently, it's

munich is

$$
\binom{13}{1} \cdot\binom{4}{2} \cdot\binom{12}{1} \cdot\binom{4}{3} .
$$

So $\operatorname{Pr}[$ full house $]=\frac{\binom{13}{1}\binom{4}{2}\binom{12}{1}\binom{4}{3}}{\binom{52}{5}}$

