Last time:

- proofs
- direct proofs
- disproof by counter example

Det let n, m be integers. n is divisible by m, if there exists int. K sown mat $n=m k$.
ex
Is 10 divisible by 5 ?
yes, because $\begin{gathered}10 \\ 7 \\ 7 \\ n\end{gathered} \begin{gathered}7 \\ m\end{gathered}$
is 11 divisible by 5 ? $\quad 2.2$ not integer. $n=11, m=5 . \quad 11=5 \cdot k$
no, because there is no k such that

$$
11=5 k
$$

is -5 divisible by s ?
choose $k=-1$? $-5=5 \cdot(-1)$
is 0 divisible by 2? yes!

Choose $k=0$.

$$
\begin{aligned}
& 0=2 \cdot 0 \\
& \uparrow=\begin{array}{c}
1 \\
n \\
m
\end{array} T_{k}
\end{aligned}
$$

Deft If n is divisible by m, we also say m divides n.

$$
m \mid n \quad " m \text { divides } n \text { " }
$$

2110 but 10×2
\uparrow
"2 divides 10 "

$$
\left(\begin{array}{c}
x=y \\
\Gamma
\end{array}\right.
$$

"x equals y " " x "does not equal y " (4.12)
claim let n be an integer. Then $n \cdot(n+1)^{2}$ is even.
step 1: understand claim
terms: even: divisible by 2 if n is divisible by 2 , then $n=2 k$ for an integer k. any is 4 even? $4=2 \cdot 2 \hat{T}_{k}$
uny is 10 even? $10=2 \cdot s_{A_{k}}$
step 2: examples

$$
\begin{array}{ccc}
\frac{n}{0} & \frac{n(n+1)^{2}}{O(1)^{2}}=0 & \frac{n(n+1)^{2} \text { is even? }}{T} \\
3 & 3(4)^{2}=3.16 & T \\
& =48 \\
-2 & -2(-1)^{2} & =-2
\end{array}
$$

we know: even \# times anything is even. easy special case:
n is even.

n is odd. treen $n+1$ is even.
Proof Consider 2 cases.
Case 7: n is even.
statements
$n=2 c$ for int. c
$n(n+1)^{2}=2 c(n+1)^{2}$ $c(n+1)^{2}$ is an int.
reasoning
by deft. If even by substitution sum, product of int is int
$n(n+1)^{2}$ is even
we gave a way to undte it as $2 k$ for integer k k is $c(n+1)^{2}$
case 2: n is odd.
statement
$n+1$ is even
$n+1=2 c$ for integer c

$$
\begin{aligned}
n(n+1)^{2} & =n(2 c)^{2} \\
& =n 4 c^{2}
\end{aligned}
$$

$2 n c^{2}$ is integer
$n(n+1)^{2}$ is even
reasoning
n is odd
def. of even
by substitution, algebra because product of integers is int def. of even

$$
\left(2 n c^{2}=k\right)
$$

Since n is either even or odd, and in either case $n(n+1)^{2}$ is even,' the claimnolds.

$$
\begin{aligned}
n(n+1)^{2} & =4 n c^{2} \\
& =2\left(2 n c^{2}\right)
\end{aligned}
$$

want:

$$
n(n+1)^{2}=2 k, k \text { int }
$$

$8 / 30$
Proof by cases:

- splits claim into cases
- proves claim in each case
- argues treat cases are exhaustive
(example 4.13 in book)
claim let x be a real number.
then $-|x| \leq x \leq|x|$.
terms: absolute value $|x|=\left\{\begin{array}{cl}-x & \text { if } x \leqslant 0 \\ x & \text { if } x \geqslant 0\end{array}\right.$ examples: $\frac{x}{3} \quad \frac{|x|}{3} \quad \frac{-|x|}{-3} \quad \frac{-|x| \leq x \leq|x| \text { ? }}{-3 \leq 3 \leq 3 ?}$

$$
\begin{array}{llll}
-\pi & \pi & -\pi & -\pi \leq-\pi \leq \pi ?
\end{array}
$$

Let x be a veal number.
Proof We prove the claim using cases. case 1: $x \geqslant 0$.

$$
\begin{aligned}
\rightarrow-x & \leq x \leq x \\
|x| & =x \\
-|x| & =-x \\
-|x| & \leq x \leq|x|
\end{aligned}
$$

because $x \geqslant 0$
by dee of abs. value, $x \geqslant 0$
by algebra substitution
case 2: $x \leq 0$

$$
\begin{array}{rc}
x \leq x \leq-x & \text { because } x \leq 0 \\
|x|=-x & \text { because } x \leq 0 \text {, del. of } \\
-|x| \leq x \leq|x| &
\end{array}
$$

Because all real numbers are either $\geqslant 0$ or ≤ 0 (or both), and the claim holds in either case, the overall claim is true.

$$
\begin{aligned}
& \text { case 1: } x>0 \\
& \text { case } 2: x<0 \\
& \text { case } 3: x=0
\end{aligned}
$$

Discrete Structures (CSCI 246)

in-class activity

Names: \qquad

Please write down the names of everyone in your group above so that you all get credit for today's in-class activity. You should turn in this paper at the end of class.

In this activity, you will begin to prove the following:
Claim 1. Suppose x and y are real numbers. If $|x| \leq|y|$, then $\frac{|x+y|}{2} \leq|y|$.

1. Are there any terms that your group needs to define to understand the claim? If yes, define them here, consulting another group, an instructor, the textbook, Google, or generative AI if needed:
2. Does your group believe that this claim is true? A yes or no is good enough.
3. What is the converse of the claim?
4. Give three more examples of x 's and y 's and check whether the claim holds for those examples (that is, fill in three more rows of the table).

x	y	$\|x\| \leq\|y\| ?$	$\frac{\|x+y\|}{2} \leq\|y\| ?$	claim holds?
1	-5	yes	yes	yes

claim: if $|x| \leq|y|$ men $\frac{|x+y|}{2} \leq|y|$
5. Give a proof of the claim in the case that $x \geq 0$ and $y \geq 0$. You may want to do some scratch work before writing the proof. Use extra paper if needed.

Proof. Begin by assuming that
 $x, y \geqslant 0,|x| \leq|y|$ def of abs-val by assumption by substitution

$$
x+y \leq 2 y
$$ adding y to both

sides

$$
x+y \geq 0
$$

$$
x, y \geq 0
$$

$$
|x+y|=x+y
$$

del. of abs value

$$
|x+y| \leq 2 y
$$

$$
\frac{|x+y|}{2} \leq y
$$

subs.

subs.

6. If you have succeeded in proving the first case, complete the proof using additional cases on a new sheet of paper.

