(4.19 in book)

Claim Suppose $15 x+111 y=55057$ for
$x, y \in \mathbb{R}$. Then ax least one of
x, y is not an integer.
examples:

$\frac{x}{0}$	$\frac{y}{55057}$	$\frac{x i n t}{111}$	lint of x, y not integer	
1	$\frac{55042}{111}$	T	F	T

False start on proving the claim:
Assume $x, y \in R, 15 x+111 y=55057$. WTS at least one of x, y not integer.

$$
\begin{array}{ll}
\text { statement } & \text { reason } \\
y=\frac{55057-15 x}{111} & \text { algebra } \\
y=\frac{55057}{111}-\frac{15 x}{111} & \text { simplifying }
\end{array}
$$

Proof (by contradiction)
Aiming for a contradiction, suppose that the Claim is false. That is, suppose that $x, y \in \mathbb{R}, 15 x+111 y=55057$, but both $x, y \in \mathbb{Z}$
statement reason

$$
\begin{gathered}
55057=15 x+111 y \\
x, y \in \mathbb{Z} \\
55057=315 x+37 \\
\frac{55057}{3}=5 x+37 y \\
18352 \frac{1}{3}=5 x+37 y \\
18352 \frac{1}{3}=k \\
k \in \mathbb{Z}
\end{gathered}
$$

by assumption

$$
55057=3(5 x+37 y) \quad \text { factoring }
$$

sum, prod of integer's is integer

But this is a contradiction, because $18352 \frac{1}{3}$ is not an integer.
Therefore, our initial assumption that $x, y \in \mathbb{Z}$ is false.
So at least one of x, y is non-integer.
(4.18)
Claim let $n \in \mathbb{Z}$. If n^{2} is even, then n is even.
n even: $2 \mid n, n=2 k$ for $k \in \mathbb{Z}$
n odd: $2 X n, \quad n=2 c+1$ for $c \in \mathbb{Z}$ 7 odd?

$$
7=2 \cdot 3+1
$$

Proof: we prove by contradiction.
Assume that if n^{2} is evens, then n is odd.

$$
\begin{array}{ll}
n=2 k+1 \text { for } k \in \mathbb{Z} & \text { del of odd } \\
n^{2}=(2 k+1)^{2} & \text { squanng both sides } \\
n^{2}=4 k^{2}+4 k+1 & \text { algebra } \\
n^{2}=2\left(2 k^{2}+2 k\right)+1 & \text { factoring } \\
n^{2}=2 c+1 & \text { sums, products of } \\
n^{2} \text { is odd } & \text { ants are ints }
\end{array}
$$

This contradicts the fact that n^{2} is even. So the assumption that n is od is false. So n must be even.

