Examples of propositions:

- for ints $n, n(n+1)^{2}$ is even
- for incs n, if n^{2} even, then n even
- for $x, y \in \mathbb{R}$, if $x \in \mathbb{Q}, y \in \mathbb{Q}$, treen $x y \in \mathbb{Q}$
- $\sqrt{2} \notin \mathbb{Q}$

In proof, we 're done:
assume n is even.

$$
\begin{aligned}
& n=2 c \text { for } c \in \mathbb{Z} \\
& n \in \mathbb{Z}, y \in \mathbb{Z} \\
& n y \in \mathbb{Z} \\
& \sqrt{2} \text { rational }
\end{aligned}
$$

some prop. that is false (contradiction)
We can construct compound propositions out of smaller propositions

Propositions that cant be broken down ave atomic propositions.

Syntax rs. Semantics

LeA p, q be propositions.
example: ($p=" 2$ is even", $q=" \sqrt{2}$ is rational")

p excmsine or $q \quad p \oplus q \quad T$ iff $p i q$ mismated formal semantics

p	q	$p \wedge q$	$p \vee q$	$\neg p$	$p \Rightarrow q$	$p \Leftrightarrow q$	$p \otimes q$
T	T	T	T	F	T	T	F
T	F	F	T	F	F	F	T
F	T	F	T	T	T	F	T
F	F	F	F	T	T	T	F

T 2 is even T 2 is even FI is even $F 3$ is even
q
$T 3$ isodd
F 4 is odd
T 3 is odd
$F 2$ is odd
$p \wedge q$
if / then: $p \Rightarrow q$
true if p "forces" q
false if p doesn't "force" g
$p=7 q$ is false unen the promise that p forces q is false men is when p is T and q is \nleftarrow mist Tie? ex If it rains, then the grass is wet.

If p, then q can also be written as:

- p implies q
- p is a sufficient conditron for q
- p only if q
- p unenever q
- q is necessany for p
$9 / 15$
Common mistakes:
- Setbuilder notcutron: variable scope let $A=\{x \in \mathbb{Z}: 3 \mid \times\}=$ all int divisible by 3

$$
\left.\begin{array}{l}
A=\{a \in \mathbb{Z}: 3 \mid a\} \\
x \in A \\
x \in\{a \in \mathbb{Z}: 3 l a\}
\end{array}\right]
$$

$$
\text { lA } x \in A
$$

- \cap is not a proposition, it's an operator

$$
\begin{array}{cr}
B=\{2,4,6\} & , C=\{2,4\} \\
A \cap B=\{6\} & A \cap B \\
A \cap C=\varnothing & A \cap C \\
10-4 &
\end{array}
$$

" S_{1}, S_{2} share at least one element"

$$
\begin{aligned}
& s_{1} \cap s_{2} \neq \varnothing \\
& s_{1} \cap s_{2}
\end{aligned}
$$

- reusing variables

Claim: If x, y rational, then $x y$ rational.
PF: Assume x, y rational.

$$
\begin{aligned}
& x=\frac{n}{d}, y=\frac{a}{b} \\
& n, a, d, b \in \mathbb{Z}, d, b \neq 0 \\
& x y=\frac{n}{d} \frac{a}{b} \\
& x y=\frac{e}{f}
\end{aligned}
$$

deft. of rational
substitution

Review Propositional Logic

Det. A truth table lists, for even possible truth assignment, the tonto value of a prop.

P	$\neg P$
T	F
F	T

p	q	$p \Rightarrow q$
T	T	T
T	F	F
F	T	T
F	T	

p	q	$p \wedge q$	$\neg q$	$(p \wedge q) \Rightarrow(\neg q)$
T	T	T	F	F
T	F	F	T	T
F	T	F	F	T
F	F	T	T	

Det. 2 propositions are logically equivalent if their truth tables are the same.

$$
p, \neg\urcorner p
$$

$$
p_{\uparrow} \equiv \neg 7 p
$$

p	$\neg p$	$\neg 7 p$
T	F	T
F	T	F

DeA. A proposition is satisfiable if its truth table has at least me T.
pet. A propostron is a tautology if even column of its thoth table is T.

For each of:
logically equivalent
not satisfiable (no T's)
tautology

