Analysis of Recursive Algorithms
warmup: what is the runtime of the following algonitum?
for $\frac{i=1}{3 / i}$ to $n: \leftarrow n(c+$?

$$
\frac{\text { if } 3 / i \cdot}{f 00(n)} \longleftarrow n \leftarrow
$$

outside-in: $f(n)=n\left(c+\frac{1}{3} n\right)=n c+\frac{n^{2}}{3}=$
inside-out: $\frac{n}{3} n+n c=\theta\left(n^{2}\right)$
Assume foo (n) takes n primitive operations. Remember, $31 i$ means " 3 divides i"

Problem: factorial
input: $n \in \mathbb{Z}^{70}$
output: $n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$
Solution:
fact (n) :
$\left.\begin{array}{l}\text { if } n=1 \text { then } \\ \text { return } 1\end{array}\right\} d$
else return $n \cdot \operatorname{fact}(n-1)\} c$
What is the runtime of fact?
idea \#1: look at the recursion tree
Def The recursion tree for an alg. A is a tree that shows all of the recursive calls spawned by A on an input of size n.
recursion tree for $\operatorname{fact}(n)$:

\downarrow
\downarrow
(1) d
idea \#2: Use a recurrence relation.
Def A recurrence relation is a function $T(n)$ that is defined in terms of values of $T(k)$ for $k<n$.
ex for fact (n), the runtime $T(n)$ is

$$
T(1)=d, \quad \rightarrow T(n)=C+T(n-1)
$$

base case recursive $\langle a s e, n>1$
fact (n) :
(if $n=1$ then $\left.\begin{array}{l}\text { return } 1\end{array}\right\} d$ else
return $n \cdot \operatorname{fact}(n-1)\} c$
But we need a closed-form solution for $T(n)$.
(1) Herate the solution a few times
(2) make a guess about $T(n)$
(3) thy to prove
(1)

$$
\begin{array}{ll}
T(1)=d \\
T(2)=c+T(1)=c+d & n=2 \\
T(3)=c+T(2)=c+(c+d)=2 c+d & n=3 \\
T(4)=c+T(3)=c+2 c+d=3 c+d & n=4
\end{array}
$$

(2) Guess: $\tau(n)=(n-1) c+d$
(3) Prove

Claim The recurrence relation defined by $T(1)=d$ and $T(n)=c+T(n-1)$ has closed-form solution $T(n)=(n-1) c+d$.]

Proof we prove the claim using math-
ematical induction.
Base case: when $n=1, T(1)=d$ by def. of recurrence relation.
$T(1)=(1-1) c+d=d$ as well, so the
base case holds.
inductive cage: we WTS

$$
\forall n \geqslant 2: \quad P(n-1) \Rightarrow p(n) .
$$

Assume $P(n-1)$; that is, $T(n-1)=C(n-2)+d$.
UTS $P(n)$; that is, $T(n)=c(n-1)+d$.

$$
\begin{aligned}
T(n) & =c+\tau(n-1) \longleftarrow \text { def. of our } \\
& =c+c(n-2)+d \longleftarrow \text { rec. rel. } \\
& =c+c n-2 c+d \\
& =c n-c+d \\
& =(n-1) c+d
\end{aligned}
$$

So Pen) holds.
Another recursive alg. assume A is sorted

```
Algorithm 1 binarySearch \((\mathrm{A}[1 \ldots n], \mathrm{x})\)
    if \(|A|=0\) then
        return False
    else
        middle \(=\left\lfloor\frac{\lfloor A\rfloor}{2}\right\rfloor\)
        if \(A[\) middle \(]=x\) then
            return True
        else if \(A\) [middle \(] \geqslant x\) then
            binarySearch (A \([1 .\). middle -1\(]\), x)
        else
            binarySearch(A[middle \(+1 \ldots 1], \mathrm{x})\)
```


What is the runtime of rec Bin Search? we would need to ask: unich runtime? worst-case. So for binary sear, assume x not in A.

- recursion tree
- recurrence relation

