Relations

CS application: relational databases

student id	first name	last name
123	Bob	smith

student id	passed course
123	$\operatorname{csCl} 246$
123	CSC 127

Questions about data stored in relational databases can be posed precisely using the language of relations. SQL (structured query language)

Det The cartesian product of two sets A, B is

$$
A \times B=\{(a, b): a \in A \wedge b \in B\}
$$

lists/tupês /arrays - order matters
$\underline{2 x}$
$\mathbb{R} \times \mathbb{R}=2 \alpha$ plane, Cartesian plane $\{$ red, blue $\} \times\{1,2,3\}=\{($ red, 1$)$, $($ red, 2$)$, $($ red, 3$),($ blue, 1$),($ blue, 2$),($ blue, 3$)\}$
Q what is $|A \times B|$? $|A|,|B|$
$|A| \cdot|B|$

$$
\begin{aligned}
& \mathbb{R} \times \mathbb{R}=\mathbb{R}^{2} \\
& \mathbb{R} \times \mathbb{R} \times \mathbb{R}=\mathbb{R}^{3}
\end{aligned}
$$

Net A binary relation R on sets A, B is a subset $R \subseteq A \times B$.
We write $(x, y) \in R$ as $x R y$

$$
(x, y) \notin R \text { as } x \not R y
$$

examples

1) R_{1} "is (blood) related to" is a binary
relation on people. relation on people.
let P be the set of all people "is blood related to" is

$$
\left\{(x, y): x \in P \wedge y \in P \wedge x \text { is related } \begin{array}{l}
\text { to } y\}
\end{array}\right.
$$

(serena williams, Venus williams) $\in R_{1}$ (Lucy williams, serena willians) $\in R_{1}$
(2)

$$
\begin{aligned}
& <\text { on } A=\{1,2,3,4\} \\
& <=\begin{array}{l}
\{(1,2),(1,3),(1,4),(2,3),(2,4), \\
\\
(3,4)\}
\end{array}
\end{aligned}
$$

$1<2$ but $3 \nless 2$
(3) Let $f: A \rightarrow B$ be a function

$$
\{(a, f(a)): a \in A\} \subseteq A \times B \text {, so it is }
$$

$\uparrow \uparrow$ a relation
Q is the converse true? let R be a binary relation on A, B.

$$
\begin{aligned}
\{(x, y) & : x \in A \wedge y \in B \wedge x R y\} \\
& \Rightarrow f: A \rightarrow B \text { sit. } f(x)=y
\end{aligned}
$$ is a function

y true or false
(4) let $A=$ morrths,$B=$ number of days Relation: month, its \#days $\{(\operatorname{Jan}, 31),($ Feb, 28$)$, (Feb, 29$)$, (Mar, 31) … $\}$

Properties of relations
Let $R \subseteq A \times A$, So R is a relation on $R: \underbrace{a_{1} \rightarrow a_{2}}_{\rightarrow a_{3}}$
R is reflexive if $\forall a \in A: a R a$ all nodes have self-loops
R is irretlexive if $\forall a \in A: a \notin a$ no nodes have self-loops
R is symmetric if

$$
\begin{aligned}
& \forall a_{1}, a_{2} \in A: a_{1} R a_{2} \Rightarrow a_{2} R a_{1} \\
& a_{1} \leadsto a_{2} \longmapsto a_{3} \notin a_{4}
\end{aligned}
$$

unenever we have a forward edge, we have the backword edge.
R is anti-symmetric if

$$
\forall a_{1}, a_{2} \in A:\left(a_{1} R a_{2} \wedge a_{2} R a_{1}\right) \Rightarrow a_{1}=a_{2}
$$

$$
\bigcap_{a_{1} \rightarrow a_{2}} \quad a_{R} \rightarrow b \rightarrow c \dot{ }
$$

never have backwards edges, but suf-loops
okay.
R is transitive if
$a \rightarrow b \rightarrow c$ shortcut edges always
Q is $a_{1} a_{2}$ transitive? $a_{1} \neq a_{2}$

$$
\text { let } \begin{aligned}
a & =a_{1} \\
\hline b & =a_{2} \\
c & =a_{1}
\end{aligned} \quad a^{a_{1} \rightarrow a_{2}}
$$

Q is a_{1} transitive?

$$
\left(a_{1} R_{a_{1}}^{\top} \wedge a_{1} R a_{1}\right) \Rightarrow\left(a_{1}^{\top} R_{1}\right)
$$

Relations review
$(a, b) \in R$
Let A, B be sets. $a R b$
$R \subseteq A \times B$ is a binary relation
often, we are concerned with relations over a single set:
$R \subseteq S \times S$ " R is a relation on S "
Properties of relations on single sets:

- reflexive: $\forall a \in A: a R a \quad \Omega$
- irreflexive: $\forall a \in A: ~ a \not R a$
- symmetric: $\forall a_{1}, a_{2} \in A: a_{1} R a_{2} \Rightarrow a_{2} R a_{1}$

$$
a_{1} \sim a_{2}
$$

- anti-symmetric: $\forall a_{1}, a_{2} \in A$:

$$
a_{a_{1}} \quad a_{2}\left(a_{1} R a_{2} \wedge a_{2} R a_{1}\right) \Rightarrow a_{1}=a_{2}
$$

- transitive:

$$
\begin{aligned}
& \text { transinve: } \\
& \forall a_{1}, a_{2}, a_{3} \in A:\left(a_{1} R a_{2} \wedge a_{2} R a_{3}\right) \Rightarrow a_{1} R a_{3}
\end{aligned}
$$

$a \quad b$ symmetric auti-symmetric

$$
A=\{a, b\}
$$

$$
\frac{R_{\varnothing}}{} \subseteq A \times A
$$

$B \subseteq$ People \times People
(lucy, Bintrey Spears) $\in B$
Lucy B Britney spears
Lucy B Braeden

$$
\begin{aligned}
> & \leq \mathbb{R} \times \mathbb{R} \\
& 2>1.5 \\
& 2>2
\end{aligned}
$$

ex relation $<$ on \mathbb{Z} :

- reflexive?
no - disproof by counterexample.
$1 \in \mathbb{Z} \cdot|\notin|$
- irreflexive? yes.
$\forall a \in \mathbb{Z}: a \notin a$.
let $a \in \mathbb{Z}$. a $\neq a$ because no integer is less man itself.

$$
D
$$

- symmetric?
disproof by counter example:
$1<2$ but $2 \nless 1$.
- antisymmetric? $\forall a_{1}, a_{2} \in A$:

$$
\left(a_{1} R a_{2} \wedge a_{2} R a_{1}\right) \Rightarrow a_{1}=a_{2}
$$

tet $a_{1}, a_{2} \in \mathbb{Z}$. Assume $a_{1}<a_{2}$ and $a_{2}<a_{1}$.
Since no a_{1}, a_{2} satisfy $a_{1}<a_{2}$ and $a_{2}<a_{1}$, $\left(a_{1}<a_{2} \wedge a_{2}<a_{1}\right) \Rightarrow a_{1}=a_{2}$ is
vacuously true.

- transitive?

$$
\forall a_{1}, a_{2}, a_{3} \in A:\left(a_{1} R a_{2} \wedge a_{2} R a_{3}\right) \Rightarrow a_{1} R a_{3}
$$

Proof Assume $a_{1}, a_{2}, a_{3} \in \mathbb{Z}$ and $a_{1}<a_{2}$ and $a_{2}<a_{3}$. By the def. of $<, a_{1}<a_{3}$

Def A binary relation R is an equivalence relation if it is reflexive, symmetric, and transitive.

consider $A=\{-1,1,2,3,4\}$

same sign $(t /-)$ same panty

$$
\begin{aligned}
& {[-1]=\{-1\}} \\
& {[1]=\{1\}} \\
& {[2]=323} \\
& {[-1]=\{-1,13\}} \\
& =[1]=[3] \\
& {[2]=\{2,4\}=[4]} \\
& {[-1]=\{-1\}} \\
& {[1]=\{1,3\}=[3]} \\
& {[2]=\{2,4\}=[4]}
\end{aligned}
$$

Pet For an equivalence relation R on set A, the equivalence class of $a \in A$ is
[a] is $\{x \in A: x R a\}$
"the equivalence class of a"

Another relation:

$$
\begin{aligned}
& \subseteq \text { on } P(\{0,1\}) \\
& P(\{0,1\})=\{\phi,\{0\},\{1\},\{0,1\}\}
\end{aligned}
$$

$A R B$ if $A \subseteq B$
$\nsupseteq R\{0\} ?$

$$
\{0,1\} \in\{0,1\} \quad\{0,1\} \subseteq\{0,1\}
$$

Ret A binary relation R on set A is:

- a partial order if R is
- reflexive,
- transitive,
- anti-symmetric
- a strict partial order if R is
- irreflexive,
- transitive,
- antisymmetric

DeA A partial order is total order if all pairs of different elements from A are comparable.

$$
\begin{aligned}
G & \forall a, b \in A:(a \neq b) \Rightarrow \\
& (a \& b \vee b R a)
\end{aligned}
$$

A strict partial order is a strict total order ip all pairs of diff. ells. are comparable.

$$
\{0\} \longrightarrow\{\{0,1\}
$$

