Det A set is an unorderded collection of distinct items called elements.
ex $D=\{0,1,2,3, \ldots, 9\}$ has 10 elements
bits $=\{0,1\}$ has 2 elements
$\mathbb{Z}=$ set of all integers

$$
\{\ldots,-2,-1,0,1,2, \ldots\}
$$

has infinite elements

$$
\begin{aligned}
& \mathbb{Q}=\text { rationals } \\
& \mathbb{R}=\text { reals } \\
& V=\{a, e, i, 0,4, y\} \text { has } 6 \text { elts } \\
& A=\{-20, \pi, a\}
\end{aligned}
$$

Def Two sets A, B are equal $(A=B)$ if A and B contain exactly the same elements.

$$
\text { ex. } \quad\{0,1\}=\{1,0\}
$$

Deft we write $x \in S$ if x in S.
" x is an element of S "
We write $x \notin S$ if x not in S.
ex $O \in$ bits $=\{0,1\}$
$2 \in$ bits
$\pi \notin \mathbb{Z}$
Deft The Cardinality or size st set S is the number of distinct elements of S.
$|s|$
ex $|b i t s|=2$

$$
\mid\{\{3,4\}, \underbrace{c a+\}} \mid=2
$$

Q can we have a set such treat (s.t.)

$$
|s|=0 ?
$$

Deft in e empty set, denoted $\}$ or \varnothing, is the set with no elements.

$$
\begin{aligned}
& |\phi|=0 \\
& \mid\{\phi 3 \mid=1 \\
& F=\{\phi,\{\phi\},\{\{\phi 3\}\} \\
& |F|=3
\end{aligned}
$$

Q If $A=B$, does $|A|=|B|$? T is the converse true? 2 min an

If $|A|=|B|$, then $A=B$. F
Pf by counter example:

$$
A=\{0\} \quad B=\{1\}
$$

$|A|=1,|B|=1$, but $A \neq B$.
Det Set builder notation defines a set

$$
S=\left\{\begin{array}{c}
x: \text { a rule about } x\} \\
\text { such mat }
\end{array}\right.
$$

such mat
S contains the elements x st. the rule about x is true.
ex evens $=\{x: x \in \mathbb{Z}$ and x event $\}$

$$
\begin{gathered}
\text { " } x \text { such mat } x \text { is in integers and } \\
x \text { even" }
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\text { evens }=\{x: x=2 c \text { for } c \in \mathbb{Z}\} \\
\text { evens }=\{x: x \in \mathbb{Z} \text { and } 2 \mid x\}
\end{array}\right.
$$

" 2 divide l $5 x "$
Det A is a subset of B (denoted $A \subseteq B$) if every element of A is also in B.
ex evens $\subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$
$Q: \mathbb{R} \leq \mathbb{Q}$? no, $\pi \in \mathbb{R}$ but $\pi \notin \mathbb{Q}$.
$Q: \phi \subseteq \mathbb{R} T$
Note: $\phi \leq S$ for all sets S.
$S \subseteq S$ for all sets S.
$(A \subset B$ means A is a strict subset of B,)
$A \subseteq B$ and $|A|<|B|$
Note: if $A \leq B$, then $|A| \leq|B|$.
Q : is the converse true?
If $|A| \leq|B|$, then $A \subseteq B \quad F$ claim $>x \in \mathbb{Z}: 18 \mid \times\} \leq\{x \in \mathbb{Z}: 6 \mid \times\}$
Step 1: underset and claim!
The numbers divisible by 18 are contained) a part of the numbers divisible by 6 .
Every number divisible by 18 is also divisible by 6 .
Step 2: do some example.
$\frac{\mathrm{ex}}{\substack{18 \\ 4}}$

$\frac{181 x ?}{T}$	
F	61x? F T
	E
F	E

Pf want to show $\{x \in \mathbb{Z}: 1: \mid x\} \leq\{x \in \mathbb{Z}: 6 / x\}$ which is to say, if $a \in\{x \in \mathbb{Z}: 181 \times 3$, then $a \in\{x \in \mathbb{Z}: 6 \mid \times 3$ by dee of \subseteq assume $a \in\{x \in 22: 18 / x\}$.
$a=18 \mathrm{c}$ for $c \in \mathbb{Z}$ del of divisibility by 18
$a=6 \cdot 3 \cdot \mathrm{C} \quad$ factoring
$a=6 \cdot k$ for $k \in \mathbb{Z} \quad \begin{gathered}\text { because } G c \text { is } \\ \text { an integer, because } \\ \text { int int }\end{gathered}$
$61 a$ int int = int def. of divisibility

$$
a \in\{x \in \mathbb{Z}: 61 \times\}
$$

$9 / 6$
Sets review
recall \mathbb{Z} =set of all integers $=\{\ldots,-2,-1,0,1, \ldots\}$

$$
\begin{aligned}
& \frac{2 \in \mathbb{Z}}{\{2,4\} \subseteq \mathbb{Z}} \quad 1.5 \notin \mathbb{Z} \\
& \{x \in \mathbb{Z}: 2 \mid \times\} \subseteq \mathbb{Z}
\end{aligned}
$$

$$
\text { is } \underline{\underline{2} \subseteq \mathbb{Z}} \leftarrow F
$$

evens
"2 subset of the integers"

$$
\{2\} \leq \mathbb{Z} \quad \uparrow
$$

"the set containing 2 is a subset of the integers"
Det $A \cup B$ " A union B " is $\{x: x \in A$ or $x \in B\}$

note tract elements $x \in A$ and $x \in B$ are in $A \cup B$.
ex $\{2,4,6\} \cup\{2,3,4\}=\{2,3,4,6\}$ evens U odds $=\mathbb{Z}$

$$
\begin{aligned}
& \mathbb{R}^{\geqslant 0} \cup \underset{\substack{\text { reals } \\
\leq 0}}{\mathbb{R} \leq 0}=\mathbb{R} \\
& A \cup \varnothing=A \\
& A \cup A=A \\
& \text { for all sets } A \\
& \{1, ~ \\
& \text { val } \quad\{2\} \cup\{1,3\}=\{1,2,3\}
\end{aligned}
$$

Det $A \cap B$ " A intersect B " $\{x: x \in A$ and $x \in B\}$

$$
A \backsim B \quad B \cap A=A \cap B
$$

not disjoint
$\{2,4,6\} \cap\{2,3,4\}=\{2,4\}$ evens odds evens \cap odds $=$ \qquad

$$
\begin{aligned}
& A \cap \varnothing=\varnothing^{\text {disjoint }} \text { for a } \\
& A \cap A=A \text { a } \\
& \mathbb{R}^{\geqslant 0} \cap \mathbb{R}^{\leq 0}=\{0\}
\end{aligned}
$$

Let Sets A, B are disjoint if $A \cap B=\varnothing$. Are $\mathbb{R}^{\geq 0}$ and $\mathbb{R}^{\leq 0}$ disjoint? no
Deft $A-B$ or $A \backslash B$ " A minus B " $\{x: x \in A$ 4 DB and $x \notin B 3$
ex

$$
\begin{aligned}
& \{2,4,6\}-\{2,3,4\}=\{6\} \\
& \{2,3,4\}-\{2,4,6\}=\{3\} \\
& \text { evens -odds = evens } \\
& A-B \leq A \\
& A-\varnothing=A
\end{aligned}
$$

Det \bar{A} or $\sim A$ "A complement" $\{x: x \notin A\}$

ex

$$
\begin{aligned}
& \{2,4,6\}=\{0,1,3,5,7,0,9\} \\
& \text { if } U \text { is }\{x \in \mathbb{Z}: 0 \leqslant x \leqslant 9\} \\
& \{2,4,6\}=\{\ldots,-2,-1,0,1,3,5,7,8,9,10,-3 \\
& \text { if } U \text { is } \mathbb{Z}
\end{aligned}
$$

Deft $A \oplus B$ " A exclusive or"

claim $A\{x \in \mathbb{Z}: 2 \mid x\} \cap\{x \in \mathbb{Z}: 9 \mid x\} B$

$$
\subseteq\{x \in \mathbb{Z}: 6 \mid x\} c
$$

if a number is divisible by 2 and 97$]$ $A \cap B \leqq C$ if $x \in A \cap B$, then $x \in C$. $P \subseteq Q$ if $y \in P$ then $y \in Q$ examples

$\frac{x}{6}$	$\frac{x \in A \cap B}{F}$	$x \in C$
0	$x \notin B$	T

Proof Assume $x \in A \cap B$. Want to show $x \in C$.

$\frac{\text { Statement }}{x \in A \text { and } x \in B}$	$\frac{\text { reason }}{\text { Let of } \cap}$
$2 \mid x$ and $9 \mid x$	set of A, B

$x=2 c$ and $x=9 d$ for integers c, \bar{d}

$$
2 c=9 d
$$

$2 \mid 9 d$
$2 \mid d$

$$
\begin{aligned}
& d=2 y \\
& \text { for } y \in \mathbb{Z} \\
& x=9 \cdot 2 \cdot y
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x=18 e}{x=6 \cdot 3} \text { fo } e \\
& \frac{x=6 f}{61 x} \text { for } f \in \mathbb{Z} \\
& x \in C
\end{aligned}
$$

del of divisibility substitution
def of divisibility ($9 d=2 k$ for $k \in \mathbb{Z}$) because $2 / 9$ dues nut divide def. of divisibility Substitution
factoring

$$
\begin{aligned}
& f= 3 \cdot e \in \mathbb{Z} \text { by } \\
& \text { int int }=\text { int }
\end{aligned}
$$ by deft of divisibility

$9 / 8$ on a paper $w /$ your name:
Write the set builder notation for:

$$
\begin{array}{ll}
A \cap B & \{x: x \in A \text { and } x \in B\} \\
\bar{A} \cup B & \{x: x \in A \text { or } x \in B\} \\
\bar{A} & \{x: x \notin A\}
\end{array}
$$

Draw the Venn Diagram for:

$$
\frac{\sqrt{\overline{A \cap B}}}{{ }_{(\bar{A} \cup \bar{B})}^{2}}
$$

$$
(A \cap B) \cup C
$$

recall \bar{A} :

recall set builder notation: $\{x \in \mathbb{Z}: 2 \mid \times\}$ example
$(A \cap B) \cup C$
A B

Det Given a set S, the power set of S is the set of all subsets of S.

$$
P(S)=\{A: A \subseteq S\}
$$

ex $S=\{1,2,3\}$
$\varnothing \leqslant B$ for $a l l$

$$
\begin{gathered}
P(s)=\{\varnothing,\{1\},\{2\},\{3\}, \\
\{1,2\},\{1,3\},\{2,3\}, \\
|P(s)|=8^{r} \underline{\{1,2,3\}}
\end{gathered}
$$

Fact $|P(B)|=2^{|B|}$ for all sets B. ex $|S|=3, \quad 2^{3}=2 \cdot 2 \cdot 2=8 \mathrm{r}$
Note power set is also denoted 2^{B} for set B.
$P(B), 2^{B}$ same
$\phi \in P(B)$ for all sets B
$B \in P(B)$ for all sets B

Question: is $\varnothing \in \bar{\varnothing}$
let's do an example. Suppose $U=\mathbb{Z}$.
$\bar{\varnothing}=\mathbb{Z}$ is $\varnothing \in \mathbb{Z}$? no.
$B \in \mathbb{Z} \quad\{3\} \in \mathbb{Z}$

Question: is $\varnothing \leq \bar{\varnothing}$?

$$
\phi \leqslant S \text { for all sets } S
$$

Theorem (De Morgan's Law)

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

Proof we prove the equivalent claim: (1) $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$ and $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$ proof of (1) let $x \in \overline{A \cap B}$. WTS that $X \in \bar{A} \cup \bar{B}$.

Proof of (2).
$9 / 11$
claim if $P(A) \subseteq P(B)$ then $A \subseteq B$. make sure we understand claim:
$P(A)=$ set of all subsets of A

$$
=\{X: X \leq A\}
$$

$A \subseteq B=A$ is a subset of B
$=$ if $x \in A$, then $x \in B$

$$
\Rightarrow
$$

examples

$$
\begin{aligned}
& B=\left\{1,2,\{1,33\} \quad|P(B)|=2^{181}=2^{3}=8\right. \\
& A=\{1\} \\
& \begin{aligned}
P(B)= & \{\dot{\phi},\{13,\{23,\{\{1,33\},\{1,\{1,3\}\},\{2, \\
& \{1,2,\{1,3\}\},\{1,2\}\}
\end{aligned} \\
& P(A)=\{\phi,\{13\} \\
& A \subseteq B \text { ! yes. } \theta(A) \subseteq \theta(B) \text { ? es }
\end{aligned}
$$

let $A=\{5\}, B=\{6\}$.
is $A \leq B$? no. $P(A) \notin P(B)$
claim if $P(A) \subseteq P(B)$ then $A \subseteq B$.
Proof Assume $P(A) \leq P(B)$. WIS $A \subseteq B$.
To show that $A \subseteq B$, we show that if $x \in A$, then $x \in B$.
Assume $x \in A$. UTS $x \in B$.

$\frac{\text { Statements }}{\{x\} \subseteq A}$	reasoning
$\{x\} \in P(A)$	get of \subseteq
$\left.\sum \times\right\} \in P(B)$	get of $P(A)$
	del of \subseteq,
$x \in B$	we trow that
$P(A) \leq P(B)$	

Since unerever $x \in A, x \in B, A \subseteq B$. B

