Name

Problem 1 (20 points (10 each))

The following are proposed proofs of the given claims. Below each one, write whether the proof is valid or not. If it is *not* valid, explain why. Only a sentence or so should be needed to explain why a proof does not work.

(a) Claim. Let x, y be real numbers. $|x| \cdot |y| = |x \cdot y|$.

Proof. We prove the claim using cases.

Case 1: $x \ge 0, y \ge 0$. Consider when x = 5 and y = 10. Then $|x| \cdot |y| = 5 \cdot 10 = 50$ and $|x \cdot y| = |5 \cdot 10| = |50| = 50$, so the claim holds.

Case 2: $x \le 0, y \le 0$. Consider when x = -4 and y = -1. Then $|x| \cdot |y| = 4 \cdot 1 = 4$ and $|x \cdot y| = |-4 \cdot -1| = |4| = 4$, so the claim holds.

Case 3: $x \ge 0, y \le 0$. Consider when x = 2 and y = -1.5. Then $|x| \cdot |y| = 2 \cdot 1.5 = 3$ and $|x \cdot y| = |2 \cdot -1.5| = |-3| = 3$, so the claim holds.

Case 4: $x \le 0, y \ge 0$. Consider when x = -3 and $y = \pi$. Then $|-3| \cdot |\pi| = 3 \cdot \pi = 3\pi$ and $|x \cdot y| = |-3 \cdot \pi| = |-3\pi| = 3\pi$, so the claim holds.

Since the cases are exhaustive and the claim holds in every case, the claim is true.

(b) Claim. If $A \not\subseteq B$, then $A - B \neq \emptyset$.

Proof. Let $A - B \neq \emptyset$. We want to show that $A \not\subseteq B$.

statement	reasoning
$\exists a \in A - B$	given that $A - B \neq \emptyset$
$\exists a \in A : a \notin B$	definition of –
$\neg [\forall a \in A : a \in B]$	Theorem 3.41, which says that $\neg [\forall x : P(x)] \Leftrightarrow [\exists x : \neg P(x)]$
$\neg [A \subseteq B]$	definition of subset
$A \not\subseteq B$	definition of \neg

Problem 2 (30 points (10 each))

(a) Fill in the truth table for $p \Rightarrow q$.

$$\begin{vmatrix} p & q & p \Rightarrow q \\ \hline T & T & \\ T & F & \\ F & T & \\ F & F & \\ F & F & \\ \end{vmatrix}$$

(b) Construct a truth table for $(\neg(p \land (\neg q))) \Rightarrow (p \lor q)$. Show at least 3 columns of scratch work (your choice).

(c) Let SortAlgs be the set of all sorting algorithms, nArrays be the set of all *n*-element arrays, and P(x, A) be a predicate that is true when algorithm A takes at least $n \log n$ steps on the the input x and false otherwise. Uses SortAlgs, nArrays, and P(x, A) to write a fully-quantified statement of predicate logic to express the following:

"Every sorting algorithm takes at least $n \log n$ steps on some *n*-element input array."

Problem 3 (20 points (2 points each))

- (a) True or false: for all sets $S, \emptyset \in S$.
- (b) Let $S = \{1, 2, 3\}$. What is the power set of S?

- (c) What is the converse of the statement "If n^2 is even, then n is even?"
- (d) What is the contrapositive of the statement "If n^2 is even, then n is even?"
- (e) Let Q(x) be the predicate that says that x is prime. Is the statement $\forall x \in \mathbb{Z} : Q(x)$ true?
- (f) Let Q(x) be the predicate that says that x is prime. Is the statement $\exists x \in \mathbb{Z} : Q(x)$ true?
- (g) Write an English sentence that is the logical negation of the sentence "Every entry in the array A is even."
- (h) Let L(x, y) be the predicate that says that x loves y. Write the fully quantified expression that corresponds to the statement that everyone loves themselves.
- (i) Is the statement "All even prime numbers greater than 10 have a 5 as their last digit" true or false?
- (j) Is the statement "In a group of 13 people, at least two share the same birth month" true or false?

Problem 4 (30 points)

Fill in the rest of the proof of the following claim.

Claim. $\{v \in \mathbb{Z} : 18|v\} \subseteq \{v \in \mathbb{Z} : 6|v\}.$

Proof. By the definition of subset, an equivalent statement is that if $x \in \{v \in \mathbb{Z} : 18|v\}$, then $x \in \{v \in \mathbb{Z} : 6|v\}$, so we prove that. Let $x \in \{v \in \mathbb{Z} : 18|v\}$. We want to show that $x \in \{v \in \mathbb{Z} : 6|v\}$.

 $\frac{\text{statement}}{18|x}$

reasoning