Name \qquad
Problem 1 (20 points (10 each))
The following are proposed proofs of the given claims. Below each one, write whether the proof is valid or not. If it is not valid, explain why. Only a sentence or so should be needed to explain why a proof does not work.
(a) Claim. Let x, y be real numbers. $|x| \cdot|y|=|x \cdot y|$.

Proof. We prove the claim using cases.
Case 1: $x \geq 0, y \geq 0$. Consider when $x=5$ and $y=10$. Then $|x| \cdot|y|=5 \cdot 10=50$ and $|x \cdot y|=|5 \cdot 10|=|50|=50$, so the claim holds.
Case 2: $x \leq 0, y \leq 0$. Consider when $x=-4$ and $y=-1$. Then $|x| \cdot|y|=4 \cdot 1=4$ and $|x \cdot y|=|-4 \cdot-1|=|4|=4$, so the claim holds.
Case 3: $x \geq 0, y \leq 0$. Consider when $x=2$ and $y=-1.5$. Then $|x| \cdot|y|=2 \cdot 1.5=3$ and $|x \cdot y|=|2 \cdot-1.5|=|-3|=3$, so the claim holds.
Case 4: $x \leq 0, y \geq 0$. Consider when $x=-3$ and $y=\pi$. Then $|-3| \cdot|\pi|=3 \cdot \pi=3 \pi$ and $|x \cdot y|=|-3 \cdot \pi|=|-3 \pi|=3 \pi$, so the claim holds.
Since the cases are exhaustive and the claim holds in every case, the claim is true.
(b) Claim. If $A \nsubseteq B$, then $A-B \neq \emptyset$.

Proof. Let $A-B \neq \emptyset$. We want to show that $A \nsubseteq B$.

$\underline{\text { statement }}$	reasoning
$\exists a \in A-B$	given that $A-B \neq \emptyset$
$\exists a \in A: a \notin B$	definition of -
$\neg[\forall a \in A: a \in B]$	Theorem 3.41, which says that $\neg[\forall x: P(x)] \Leftrightarrow[\exists x: \neg P(x)]$
$\neg[A \subseteq B]$	definition of subset
$A \nsubseteq B$	definition of \neg

Problem 2 (30 points (10 each))
(a) Fill in the truth table for $p \Rightarrow q$.

$|$| p | q | $p \Rightarrow q$ |
| :---: | :---: | :--- |
| T | T | |
| T | F | |
| F | T | |
| F | F | |

(b) Construct a truth table for $(\neg(p \wedge(\neg q))) \Rightarrow(p \vee q)$. Show at least 3 columns of scratch work (your choice).
(c) Let SortAlgs be the set of all sorting algorithms, n Arrays be the set of all n-element arrays, and $P(x, A)$ be a predicate that is true when algorithm A takes at least $n \log n$ steps on the the input x and false otherwise. Uses SortAlgs, nArrays, and $P(x, A)$ to write a fully-quantified statement of predicate logic to express the following:
"Every sorting algorithm takes at least $n \log n$ steps on some n-element input array."

Problem 3 (20 points (2 points each))
(a) True or false: for all sets $S, \emptyset \in S$.
(b) Let $S=\{1,2,3\}$. What is the power set of S ?
(c) What is the converse of the statement "If n^{2} is even, then n is even?"
(d) What is the contrapositive of the statement "If n^{2} is even, then n is even?"
(e) Let $Q(x)$ be the predicate that says that x is prime. Is the statement $\forall x \in \mathbb{Z}: Q(x)$ true?
(f) Let $Q(x)$ be the predicate that says that x is prime. Is the statement $\exists x \in \mathbb{Z}: Q(x)$ true?
(g) Write an English sentence that is the logical negation of the sentence "Every entry in the array A is even."
(h) Let $L(x, y)$ be the predicate that says that x loves y. Write the fully quantified expression that corresponds to the statement that everyone loves themselves.
(i) Is the statement "All even prime numbers greater than 10 have a 5 as their last digit" true or false?
(j) Is the statement "In a group of 13 people, at least two share the same birth month" true or false?

Problem 4 (30 points)
Fill in the rest of the proof of the following claim.
Claim. $\{v \in \mathbb{Z}: 18 \mid v\} \subseteq\{v \in \mathbb{Z}: 6 \mid v\}$.
Proof. By the definition of subset, an equivalent statement is that if $x \in\{v \in \mathbb{Z}: 18 \mid v\}$, then $x \in\{v \in \mathbb{Z}: 6 \mid v\}$, so we prove that. Let $x \in\{v \in \mathbb{Z}: 18 \mid v\}$. We want to show that $x \in\{v \in \mathbb{Z}: 6 \mid v\}$.
statement reasoning
$18 \mid x$

