
Name

Problem 1 (20 points (10 each))

The following are proposed proofs of the given claims. Below each one, write whether the proof is valid
or not. If it is not valid, explain why. Only a sentence or so should be needed to explain why a proof
does not work.

(a) Claim. n2 − 56 is not O(n).

Proof. In order to show that n2 − 56 is not O(n), we need to show that there do not exist real
numbers c > 0, n0 ≥ 0 such that ∀n ≥ n0 : n2 − 56 ≤ c · n. Notice that n2 − 56 and n intersect at
n = 8, so consider n0 = 9 and c = 1. When n = 10, n2 − 56 = 100− 56 = 44, which is greater than
10. So ∀n ≥ 9 : n2 − 56 ≤ 1 · n does not hold, so n2 − 56 is not O(n).

(b) Claim. The best-case runtime of recursive binary search (below) is O(1).

Algorithm 1 binarySearch(A[1...n], x)

1: if |A| = 0 then
2: return False
3: else
4: middle = ⌊ |A|

2 ⌋
5: if A[middle] = x then
6: return True
7: else if A[middle] > x then
8: binarySearch(A[1..middle− 1], x)
9: else

10: binarySearch(A[middle+ 1...1], x)

Proof. Note that the if statement on lines 1-2 uses a constant c number of primitive operations
and that the else on lines 3-10 uses a constant d operations. In the best case, |A| is 0, so only the
if statement is executed and the runtime is f(n) = c. Since any degree k polynomial is O(nk) and
f(n) = c is a degree zero polynomial, this algorithm has a best-case runtime of O(1).

1

Problem 2 (20 points)

In this problem, you will prove that 2n2 +3 = O(n3) using the definition of big O. Follow the three steps
carefully.

(5 points) Write down the definition of big O.

(10 points) Give a c and a n0 that can be used to prove that 2n2 + 3 = O(n3).

(5 points) Explain what it would mean for this c and n0 to work in a proof that 2n2 + 3 = O(n3), and very
briefly explain why they do (write one sentence, draw a graph, etc).

2

Problem 3 (20 points)

(a) For the following algorithm give a proposed function representing the number of primitive operations
for the algorithm in terms of the input size, addressing each line and/or loop of the algorithm. You
do not need to be precise counting constant numbers of primitive operations (e.g., figuring out
exactly how many primitive operations a single line does). However, you should try to be precise
about how many times a loop runs.

Algorithm 2

1: for i = 1 to 2n do
2: j = n;
3: while j > 1 do
4: j = j/3;

Algorithm 1 takes f(n) = primitive operations.

(b) For the f(n) you gave in (a), give the “tightest” (aka asymptotically smallest) g(n) such that
f(n) = O(g(n)) (That is, give g such that f(n) = Θ(g).

f(n) = O()

3

Problem 4 (20 points)

Recall the recursive binary search algorithm from Problem 1:

Algorithm 3 binarySearch(A[1...n], x)

1: if |A| = 0 then
2: return False
3: else
4: middle = ⌊ |A|

2 ⌋
5: if A[middle] = x then
6: return True
7: else if A[middle] > x then
8: binarySearch(A[1..middle− 1], x)
9: else

10: binarySearch(A[middle+ 1...1], x)

Notice that on line 4, binarySearch calculates middle as ⌊ |A|
2 ⌋, meaning that if |A|

2 is non-integer, it
is rounded down to the nearest integer..

In this problem you will give a recurrence relation for the worst-case runtime of binarySearch. You
may assume that the if statement on lines 1-2 uses a constant c number of primitive operations, and
that the else on lines 3-10 uses a constant d operations.

(a) Describe the worst-case input for binarySearch on an array of size n.

(b) Give the base case of the recurrence relation. Make sure you use the smallest possible input to the
algorithm, and remember that we are assuming a worst-case input.

(c) Give the recursive case of the recurrence relation.

4

Problem 5 (20 points)

Each is worth 5 points.

(a) True or false: if f(n) =

{
6n2 + 2n+ 3 if n is odd,

6 otherwise
, then f(n) = O(n2).

(b) Recall that big O forms a relation on the set of functions f : R≥0 → R≥0 where function f1 is related
to function f2 if f1 = O(f2). The claim “the big O relation on the set of functions f : R≥0 → R≥0 is
comparable” is false. Recalling that a relation R on set S is comparable if ∀x, y ∈ S : xRy or yRx,
how would you go about disproving the claim? (You don’t need to actually disprove it here, just
explain how you would.)

(c) Give a disproof to the claim from (b).

(d) Iterate the following recurrence relation for n = 0 through n = 4: T (0) = 3; T (n) = T (n− 1) + n.

• T (0) =

• T (1) =

• T (2) =

• T (3) =

• T (4) =

(e) What is log2 16?

5

