Recall that a binary tree T is either:

- 1. null (the empty tree), or
- 2. a root node r with two binary trees T_{ℓ} and T_r as its left and right subtrees.

Prove by structural induction that for every binary tree T, countLeaves(T), defined below, returns the number of leaves of T.

$\overline{\text{Algorithm 1 countLeaves}(T)}$
1: if T is null then
2: return 0
3: else
4: Let T_{ℓ} , T_r be the left and right subtrees of T
5: if T_{ℓ} , T_r both null then
6: return 1
7: $else$
8: $return countLeaves(T_{\ell}) + countLeaves(T_{r})$