In CS, wire concerned w/ solving problems with a computer.
A problem for a computer must be defined precisely + unambiguously by its input and its desired output.
ex sort an array
input: array t way to compare
output: sorted array
compute the factorial of a positive int output:n!
Note that we need the tools of discrete matrix to define these inputs /outputs precisely!
A solution is some method of taking in an arbitrary input and computing anon output wt desired properties defined by the problem.
Typically this method is an algorithm, a sequence of steps you can perform to get Prom input to output.
In practice, this is a mix of precise t Unambiguous notation and some words
for intuition. We call this mix pseudocode. for intuition. We call this mix pseudocode.
ex for the factorial problem above:
$\operatorname{fact}(n)$:
if $n=1$ then
return 1
else
return n. fact $(n-1)$
For any algontum, you should ask yourself:

1. Does the alg. actually work? 1.e., does it give true correct output for every valid input?
Proving tais is a focus of later courses... but wee certainly need discrete math to do it! And we can do it how...
$\frac{e x}{n!} \forall n \geqslant 1$. The recursive algonitum fact computes
Pf For pos. integer n, let, $P(n)$ denote the property that fact (n) = n!. We prove by mathematical induction that $\forall n \geqslant 1: p(n)$. base case $(n=1)$: fact (1) returns 1 and $\left.\right|^{\prime}:=1$. inductive case: we wis $\forall n \geqslant 2: P(n-1) \Rightarrow P(n)$.
Assume $P(n-1)$. That is, fact $(n-1)$ returns ($n-1$)!. WTS fact $(n)=n!$. Note that:

$$
\begin{aligned}
\text { fact }(n) & =n \cdot \operatorname{fact}(n-1) & & \text { by def. of fact } \\
& =n!(n-1)! & & \text { by I H } \\
& =n! & & \text { by det. of! }
\end{aligned}
$$

2. Does the alg. work efficiently?
ex for the array sorting problem:
sort (A):
fer S : the self of all orderings of A^{\prime} 's elts
if x is sorted:
return x
Is this alg efficient? No -wren eats of A are distinct, $|S|=\operatorname{leng} \ln (A)!<$ factorial
we focus on renti. e in trio class.
How to measure runtime?
idea $\neq 1$: implement alg., run it, time it.

- depends on software, hardware, os, ...
- implementation takes time t is error prone
- unat input do we run it on?
idea \#2: © find a function that expresses alg's runtime as a function of input size \# of primitive operations: antumetic ops, logical ops, variable retrieval + assignment, etc
(2) use big o to represent the function, so that we can get a bigger-picture idea of the runtime and compare it to opine ails Ul's see some examples of (1)
ex How many primitive ops does the following pseudocode snippet do?
for $i=1$ to $i=n$ do for $j=1$ too $j=n d o$
s in $=s v m+i \cdot j$

$$
O\left(n^{2}\right)
$$

ex for $r=1$ to $n=1$ do

$$
\begin{aligned}
& r=1 \text { to } n=1 \text { do } \\
& \text { or } c=1 \text { to } m \text { do } \\
& \left.p[r][c]=r+c] \text { (} 1)] \sum_{c=1}^{m} 1=m\right] \sum_{r=1}^{n} m=m n
\end{aligned}
$$

$O(m n)$
ex for $x=1$ to $x=n ~ d o$

$$
\begin{aligned}
& \text { for } y=1 \text { to } y=n d o \\
& f_{0} \operatorname{bar}()
\end{aligned}
$$

0 (runtime
fob ar)
$O\left(n^{2}-R T\right.$ of foobar)

$$
\begin{aligned}
& \text { ex for } i=1 \text { to } i=n \text { do } \\
& \text { for } j=i \text { to } j=n \text { do } \\
& \text { sum }=\text { sum }+i . j \\
& O\left(n^{2}\right) \\
& =\sum_{i=1}^{n} n-\sum_{i=1}^{n} i+\sum_{i=1}^{n} 1 \\
& =n^{2}-\frac{n(n+1)}{2}+n
\end{aligned}
$$

ex for $i=1$ to $i=n$ do for $j=1$ to $j=n$ do for $k=1$ to $k=n$ do

- sometning o(1) -
$O\left(n^{3}\right)$
ex unile $n>1$ do

$$
\left.\left.\begin{array}{l}
\text { ile } n>1 \text { do } \\
n=n-1
\end{array}\right] o(1)\right] \begin{aligned}
& O(n) \text { times do } \\
& o(1) \text { ops }
\end{aligned}
$$

$O(n)$
ex unile $n>1$ do $n=n / 2$ o(1) $O(\log n)$ times do
$O(\log n)$

