Direct Proofs and Disproofs by counter-Example

Def a proposition (statement, cla in) is a statement that is either always true or always false. For a proposition, its thoth value is its truth or its falsity.
ex
$2+2=4$
prop? y
33 is a prime number F

Every integer greater tran 2 car be united as the sum of two primes.

$$
\begin{array}{ll}
x & 1+2+3+4=10 \\
n & 1+2+3+4=x
\end{array}
$$

n Don't forget to do Drill 1 !
In this class, our task is to learn and practice methods of proving proposition T or F.

Deft A proof is a convincing argument that a proposition is true. A disproof is an argument that a prop. is false. claim (from 4.10 in book)
Any positive integer n is divisible by 4 if and only if its last two digits are divisible
by 4 . by 4.
Step 1: understand tree proposition.

- what do we wean by "last trio digits div. by 4?" 136 (is div. by 4)
3 div. by 4 and 6 div. by $4 x$ 36 is div. by 4
- anat does "divisible by 4 " mean? there exists an integer k such prat $n=4 k$
- positive integer $1,2,3, \ldots$ not $0,-5,1.2$
- if and only if part 1 implies Part 2

If the last two digits of n ane divisible by 4 , tree n is divisible by 4 .

Step 2: do some examples

n	last 2 digits	n div. by $4 ?$	div. by 4?
20	20	$20=4 \cdot 5 T$	T
17	17	$n=4 \cdot k$,	F
100	$(00) 0$	$100=4 \cdot 25 T$	$0=4.0$
131	31	N	N

step 3: think about special cases that you cav already prove.
for example (e.g.), multiples of 100.
Proof let $d_{k}, d_{k-1}, \ldots, d_{1}, d_{0}$ be the digits of n.

$$
\Rightarrow \quad n=d_{0}+10 d_{1}+\cdots+10^{k-1} d_{k-1}+10^{k} d_{k}
$$

"impliesinat" because of the def. of base 10

$$
\Rightarrow \quad n=d_{0}+10 d_{1}+100\left(d_{2}+10 d_{3}+\cdots+10^{k-3} d_{k-1}+10^{k-2} d_{k}\right) \quad \begin{aligned}
& \\
&+1
\end{aligned}
$$

by factoring out 100

$$
\begin{aligned}
& \Rightarrow \quad n= d_{0}+10 d_{1}+25 \cdot 4\left(d_{2}+10 d_{3}+\cdots+10^{k-3} d_{k}\right. \\
& \text { because } 100=25 \cdot 4 \\
&=7 \quad \frac{n}{4}= \frac{\left(d_{0}+10 d_{1}\right)+}{4}+\underbrace{}_{k} 5 \cdot 4\left(d_{2}+10 d_{3}+\cdots+10^{k-3}+10_{k}+2 d_{k}\right) \\
& \Rightarrow
\end{aligned}
$$

$\Rightarrow \frac{n}{4}$ is an int. if and only if

$$
\frac{\left(d_{0}+10 d_{1}\right)}{4}+\frac{25\left(d_{2}+10 d_{3}+\ldots+\right.}{\left.10^{k-3} d_{k-1}+10^{k-2} d_{k}\right)} \frac{4}{\text { is integer }}
$$

because the tho are equal

