Warmup problems
Prove or disprove:

$$
\frac{\sqrt{0 . g \cdot 2^{0}}, 2^{1}, 2^{2}, 2^{3}, \ldots}{}
$$

1) all odd powers of 2 are neg a five.
1.5) all odd powers of 2 for exponents greater than 0 ave negative, $2^{e} \cdot g^{\prime}, 2,2^{4}, 2^{3}, \ldots$.
2) All primes are odd.
3) All primes greater than 2 are odd.

Prime: only factors are 1, itself. 10 not prime because 5 is a factor.

1) powers of $2:\left\{\underline{2}^{0}, 2^{1}, 2^{2}, 2^{3}, \ldots\right\}$
odd powers of $2:\left\{2^{\circ}=1\right\}$
F because \exists odd power of 2 that is not negative.
(.5) odd powers of 2 for exponents >0 \{3 vacuously true
2) Z is prime.
3) True.

Contradiction. Assume not all primes >2 are odd. Ia prime >2 not odd.
Contrapositive:
Let $p \in \mathbb{Z}, p>2$.
claim.

$$
c^{k}
$$

$$
\downarrow
$$

If ρ is prime, then p is odd.
if p is even, tree p is not prime T contra positive

Deft let A, B be sets.
$f: A \rightarrow B$ is a function iff it assigns to each $a \in A$ a single value $b \in B$, denoted $f(a)$.
Equivalently, f has the 3 properties:

1) for each $a \in A, f(a)$ is defined.

2) for each $a \in A f(a)$ does not produce 2 diff. outputs

NOT a function
3) For eaen $a \in A, f(a) \in B$.

$f: A \rightarrow B$
A is the domain of f
B is the codomain of f
The range of f is $\{f(a): a \in A\}$

$a \in A$	$f(a) \in B$		
a_{1}	$f\left(a_{1}\right)$		
a_{2}	$f\left(a_{2}\right)$		
a_{3}	$f\left(a_{3}\right)$		some elements of
:---:			
B may hove wore			
Man we or zeNo			
vows			

Tall elements of A have exactly one row domain ${ }^{2}$ domain
ex $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$. domain: \mathbb{R} domain: $\mathbb{R} \mathbb{R}$
codomain range: $\mathbb{R}^{2,0}$

intuitive proof of the 3 properties:
$\forall x \in \mathbb{R}, x^{2}$ is defined (prop. 1)
$\forall x \in \mathbb{R}, f(x)=x^{2}$, a single value (prop.2)
$\forall x \in \mathbb{R}, f(x) \in \mathbb{R}$, because $x^{2} \in \mathbb{R}$ (prop. 3)
ex let $L: \mathbb{R} \rightarrow \mathbb{R}$ defined by $L(x)=\log (x)$. is L a function? No!
Prop 1: L defined for all $x \in \mathbb{R}$.
$x=0: \log (0)$ is undefined.
ex $M: \mathbb{R}^{>0} \xrightarrow[\text { domain }]{\rightarrow} \mathbb{R}$ detimain bed $M(x)=\log (x)$. domain $\downarrow^{\text {codomain }}$
ex $s: \mathbb{Z} \rightarrow \mathbb{Z}$ deft by $s(x)=x+1$ "successor function"

range $: \mathbb{Z}$

