Review
domain
codomain
Let A, B be sets $f: A \rightarrow B$ is a function if it satisfies 3 props:

1) $\forall a \in A \quad f(a)$ is defined
2) $\forall a \in A$ fa) does not produce 2 diff outputs
3) $\forall a \in A \quad f(a) \in B$
$\{f(a): a \in A\}$ range range \leq colo- main
examples

$$
\begin{array}{ll}
f: \mathbb{R} \rightarrow \mathbb{R} & f(x)=x^{2} \\
f: \mathbb{R}^{2} \rightarrow \mathbb{R} & f(\langle x, y))=x
\end{array}
$$

$E: \mathbb{Z} \rightarrow\{\tau, F\} \quad E(x)=$ is even

$a \in A$	$b \in B$
a_{1}	$f\left(a_{1}\right)$
a_{2}	$f\left(a_{2}\right)$
a_{3}	$f\left(a_{3}\right)$
\vdots	к
doesnit have to	
My el of	have allelts B;
exactly crow	dupes okay

$S: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $S(x)=x+1$ successor function
domain $=\mathbb{Z}$
codomain $=\mathbb{Z}$ -
range $=\mathbb{Z}$
claim: $s: \mathbb{Z} \rightarrow \mathbb{Z}$ is a function
proof: we prove all 3 properties.

1) $\forall x \in \mathbb{Z} s(x)$ is defined as $x+1$.
2) To show $\forall x \in \mathbb{Z}, s(x)$ does not produce 2 diff outputs, we show that if $s(x)=a$ and $s(x)=b$ tron $a=b$.
suppose $s(x)=a$ and $s(x)=b$.
$a=x+1$ and $b=x+1$ def. of S

$$
a=b
$$

substitution
3) wis $\forall x \in \mathbb{Z}, s(x) \in \mathbb{Z}$.
$s(x)=x+1$, win is an integer because sum of inf is int.
(Notice hat $S(x)=x+1$ is a integer)
ex $s: \mathbb{R} \rightarrow \mathbb{Z} \quad s(x)=x+1$
claim: s is a function
not a function, because violates (3). let $x=1.5 . \quad s(x)=2.5 \notin \mathbb{Z}$

recall

$$
\begin{aligned}
& f: \mathbb{R} \rightarrow \mathbb{R}^{\downarrow} \\
& f(x)=x^{2} \\
& \text { range: } \mathbb{R}^{\geqslant 0}
\end{aligned}
$$

ex $f: \mathbb{R}^{\geqslant 0} \rightarrow \mathbb{R}$
not a function violates prop (2)
defined by $f(x)=$ pie number chose absolute value is x

$$
s \in \mathbb{R}^{>10}
$$

$f(5)=$ the number nose abs. val is 5

$$
5,-5
$$

(1) find a group $2-5$
(2) 7 person get a slip of paper
(3) 15 min to prove that function is/ is not a function
(4) turn in for possible bonus

