DeA A function $f: A \rightarrow B$ is 1. onto (surjective) if

$$
\forall b \in B \quad \exists a \in A: f(a)=b
$$

$\equiv \forall b \in B$, something in A maps to it $\equiv \forall b \in B, b$ shows up in $\geqslant 1$ row of table
三codomain = range table
2. one-to-one (infective) if
$\forall a_{1}, a_{2} \in A \quad a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \Rightarrow f\left(a_{2}\right)$
$\equiv \forall b \in B$, at most 1 thing in A maps to
$\equiv \forall b \in B, b$ shows up in ≤ 1 row of table
3. a bijection if boon on to and $1: 1$ $V b \in B$, exactly 1 ell. of A maps tit.

How do we prove that f onto / $1: 1$?
onto
UTS $\forall b \in B \quad \exists a \in A: f(a)=b$.
\equiv if $b \in B$ then $\exists a \in A: f(a)=b$.
Step 7: suppose that $b \in B$.
Step 2: Show mat $\exists a \in A: f(a)=b$ by constructing a si+ $f(a)=b$.
ex recall $s: \mathbb{Z} \rightarrow \mathbb{Z}, s(x)=x+1$.
claim: S is onto.
$s(x)=x+1$. have $b \in$. how did 1 get it?

$$
b-1 \text {. }
$$

proof let $b \in \mathbb{Z}$. we need to show tat $\exists a \in \mathbb{Z}$: s $(a)=b$ consider $a=b-1, \quad a \in \mathbb{Z}$ and $s(a)=b-1+1=b$,
is needed.
This is an example of proof by
constriction.
not onto:

$$
\begin{aligned}
& \text { UTS } \neg(\forall b \in B \quad \exists a \in A: f(a)=b) \\
& \equiv \exists b \in B \quad \forall a \in A \quad f(a) \neq b
\end{aligned}
$$

Construct $b \in B$ s.t. nothing in A maps to it.
ex $f: \mathbb{R} \rightarrow \mathbb{R} f(x)=x^{2}$ not onto.
proof consider $b=-1 \in \mathbb{R}$

$$
\begin{array}{ll}
\forall a \in \mathbb{R}: f(a)=a^{2} & \text { def of } f \\
\forall a \in \mathbb{R}: f(a) \geq 0 & \text { prop. of } 2 \\
\forall a \in R: f(a) \neq b & b<0
\end{array}
$$

invalid proof that f is onto:
let $b \in \mathbb{R}$. WTs that $\exists a \in \mathbb{R}: f(a)=b$. Consider $a=\sqrt{b}$. 2 since $b \in \mathbb{R}, \sqrt{b} \in \mathbb{R}$; Also, $f(a)=(\sqrt{b})^{2}=b$.
next fine: $1: 1$
Proving $f: A \rightarrow B \quad 1: 1 \quad p$ WIS $\forall a_{1}, a_{2} \in A \quad a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)$ direct proof:

1. assume $a_{1}, a_{2} \in A$ and $a_{1} \neq a_{2}$
2. show that ' $f\left(a_{1}\right) \neq f\left(a_{2}\right)$
contrapositive:
3. assume $a_{1}, a_{2} \in A$ and $f(a)=f(b) \leftarrow$
4. Show $a_{1}=a_{2} \leftarrow$
ex $S: \mathbb{Z} \rightarrow \mathbb{Z} \quad S(x)=x+1$
claim: s is $1: 1$
Proof suppose $a_{1}, a_{2} \in \mathbb{Z}$ and $s\left(a_{1}\right)=s\left(a_{2}\right)$. $\omega T S \quad a_{1}=a_{2}$.

$$
\begin{aligned}
& a_{1}+1=a_{2}+1 \\
& a_{1}=a_{2}
\end{aligned}
$$

\leftarrow recall $1=$ set minus
def of S, assumed $s^{\prime}\left(a_{1}\right)=s\left(a_{1}\right)$ algesva
ex

$$
f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R} \quad f(x)=\frac{1}{x}+1
$$

domain: real $\#$ s except 0
claim: f is $1: 1$

proof: aiming to prove the contrapositive, assume $\left.a_{1}, a_{2} \in \mathbb{R} \backslash \xi 0\right\}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$. CTS $a_{1}=a_{2}$.

$$
\begin{aligned}
\frac{1}{a_{1}}+1 & =\frac{1}{a_{2}}+1 \\
\frac{1}{a_{1}} & =\frac{1}{a_{2}} \\
a_{1} & =a_{2}
\end{aligned}
$$

$$
\text { aet of } f, f\left(a_{1}\right)=f\left(a_{2}\right)
$$

a lgebra
not $1: 1$

$$
\begin{aligned}
& {\left[\forall a_{1} a_{2} \in A: a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)\right] } \\
\equiv & \exists a_{1}, a_{2} \in A: \neg\left[\left(a_{1} \neq a_{2} \Rightarrow f\left(a_{1}\right) \neq f\left(a_{2}\right)\right]\right. \\
\equiv & \exists a_{1}, a_{2} \in A: a_{1} \neq a_{2} \wedge f\left(a_{1}\right)=f\left(a_{2}\right) \\
& (\neg(p \Rightarrow \neg q) \equiv p \wedge \neg q)
\end{aligned}
$$

exists a_{1}, a_{2} different but $f\left(a_{1}\right)=f\left(a_{2}\right)$ agrees with our, idea of disproof by counter example!
ex $f: \mathbb{R} \rightarrow \mathbb{R} f(x)=x^{2} \quad \underset{\sim}{\text { claim: }} \operatorname{lot} 1$
proof: let $a_{1}=2 \in \mathbb{R}, a_{2}=-2 \in \mathbb{R}$

$$
\begin{aligned}
& f\left(a_{1}\right)=2^{2}=4 \\
& f\left(a_{2}\right)=(-2)^{2}=4 \\
& \text { so } a_{1} \neq a_{2} \wedge f\left(a_{1}\right)=f\left(a_{2}\right)
\end{aligned}
$$

Note: to prove f a bijection, prove both: f onto
we sid this for $s=(x+1)$.

