Note:
$f: A \rightarrow B$ is a bijection $\Rightarrow|A|=|B|$

$s: \mathbb{Z} \rightarrow \mathbb{Z}$ is a bijection

$$
\begin{aligned}
&|\mathbb{Z}|=|\mathbb{Z}| \\
&|2 \mathbb{Z}|=|\mathbb{Z}| \\
&|\xi x \in \mathbb{Z}: 2| \times 3 \mid
\end{aligned}
$$

$|\mathbb{R}|>|\mathbb{Z}| \begin{aligned} & \text { proof by contradiction } \\ & \text { bijection }\end{aligned}$
$f: A \rightarrow B$ is onto $\Rightarrow|A| \geqslant|B|$

$$
f: A \rightarrow B \text { is } 1: 1 \Rightarrow|A| \leq|B| \nmid
$$

contrapos.
$|A|>|B| \Rightarrow f$ is not $1: 1$

Theoreun 9.13 (Pigeonhole Principle) PHP
let A, B be sets and $f: A \rightarrow B$ a function.
If $|A|>|B|$, then there are 2 distinct a, $a^{\prime} \in A$ sit. $f(a)=f\left(a^{\prime}\right)$.

$$
\begin{aligned}
|A|>|B| \Rightarrow \exists a, a^{\prime} \in A: & :\left(a \neq a^{\prime}\right) \\
& f(a)=f\left(a^{\prime}\right)
\end{aligned}
$$

Proof the PHP is contrapos. of \& the "pigeon" way of thinking about this: suppose $A=n+1$ pigeons
$B=n$ cubbies
each pigeon flies to a cubby.
if $f($ pigeon $a)=$ pigeon a^{\prime} s cubby $\geqslant 2$ pigeons shave a cubby

claim among 13 people, ≥ 2 shave a birth month.
proof let A (pigeons) be the set of 13 people.
let B (pigeon holes) be the set of
$f: A \rightarrow B$ defined by $f($ person $a)=$
is f a function?

1) each a has birth month
2) each person a has only one birth month
3) every biting months is in the set of

$$
\text { note that } \left.\left\lvert\, \begin{array}{l}
|A|=13 \\
|B|=12
\end{array}\right.\right\} \Rightarrow|A|>|B|
$$

Thus by PHP $\exists a_{1}, a_{2} \in A$ sit. $a_{1} \neq a_{2}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)$.
So prove are 2 distinct people a_{1} and a_{2} s.t. o_{1}^{\prime} s birth mouth and a_{2} 's birth month are same.

draw 5 points greater nan $\frac{\sqrt{2}}{2}$ apart

claim (9.36) Let $n \geqslant 0$, integer.
Suppose $\exists n^{2}+1$ points in unit square. tue $\exists 2$ points within $\sqrt{2} / n$ of each other. ex let $n=2 . \quad n^{2}+1=5$.
Pf let A be the set of $n^{2}+1$ points. let B be the set of $n^{2} 1 / n \times 1 / n$ boxes of the unit square. a $f\left(a_{2}\right)$

Let $f: A \rightarrow B \quad f($ point $a)=$ the $1 / n \times 1 / n$ box that contains a.
Is f fin? Cheek $1,2,3$ on shared

1. is f all a $\in A$? map to map to
below t left pox.
Note: $\left.\begin{array}{rl} & |A|=n^{2}+1 \\ & |B|=n^{2}\end{array}\right\} \Rightarrow|A|>|B|$
By PHP $\exists a_{1}, a_{2} \in A$ sit. $a_{1} \neq\left(a_{2}, f\left(a_{1}\right)=f\left(a_{2}\right)\right.$ That is, $\exists 2$ distinct points a_{1}, a_{2} sit. a_{1}, a_{2} are within some $1 / n \times 1 / n$ subsquare.
within a $\ln x \ln$ subsquare, the farthest that 2 points can be is $\frac{\sqrt{2}}{n}$:

$$
\begin{aligned}
& \frac{1 / n}{1 / n}=\frac{\sqrt{\left(\frac{1}{n}\right)^{2}+\left(\frac{1}{n}\right)^{2}}}{\frac{2}{n^{2}}}=\frac{\sqrt{2}}{n} .
\end{aligned}
$$

