$\frac{\text { Recursion }}{\text { solving is a common strategy for }}$ solving CS problems.
-take a problem instance

- Split it into subproblems
- until they ave small
ex binary search
Problem: find an element in a sorted away

base case: only ore element.

Matrematical induction is a proof technique that is analogous to
recursion.
ex to prove tract $1+2+3+\cdots+n=\frac{n(n+1)}{2}$, we prove that the formula holds for $n=0$ (base case) and that if it holds for some $n \geqslant 1$, tree it holds for $n+1$.

Deft let P be a predicate concerning intr $\geqslant 0$. To give a proof by mathematical induction that $\forall n \in \mathbb{Z} \geqslant 0: P(n)$, we prove 2 mings:
(1) Base case: prove $P(0)$.
(2) Inductive case: $\forall n \geqslant 1$, prove

$$
P(n-1) \Rightarrow P(n)
$$

If we do (1) and (2), we've proved
$\forall n \in \mathbb{Z} \geqslant 0: P(n)$. Why? $\forall n \in \mathbb{Z}^{\geqslant 0}: p(n)$. why?
$\frac{x}{P(n-1)}$ Suppose we have proven $P(0)$ and $P(n-1) \Rightarrow P(n)$. these establish $P(3)$.
Proof WTS P(3).
Statement reasoning $P(0)$
we proved it (base)

$$
\begin{array}{cl}
P(0) \Rightarrow P(1) & \\
P(1) & \left(\begin{array}{ll}
n=1 \text { for } P(n-1) \Rightarrow \\
P c P(0) \\
P(\operatorname{modus} P \\
P(2) &
\end{array}\right. \\
& \text { bcP(n-1) } \Rightarrow P(n \\
P(2) \Rightarrow P(3) & \text { modus poneus } \\
P(3) & \text { bc } P(n-1) \Rightarrow P(n)
\end{array}
$$

(1) Base case: prove $P(0)$.
(2) Inductive case: $\forall n \geqslant 0$, prove

ex

$$
\begin{array}{lll}
\frac{n}{0} & \frac{\text { LHS }}{2^{0}=1} & \frac{\text { RHS }}{2^{1}-1=2-1=1} \\
1 & 2^{0}+2^{1}=1+2=3 & 2^{2}-1=4-1=3 \\
2 & 2^{0}+2^{1}+2^{2}=1+2+4 & 2^{3}-1=8-1=7 \\
& =7
\end{array}
$$

Steps to prove a " $\forall n \geqslant 0$ \qquad "statement using mathematical induction:
(1) Clearly state $P(n)$ and that your proof is by induction and munich variable you are performing induction over.
(2) Prove $P(0)$ (base case)
(3) Prove $\forall n \geqslant 1, P(n-1) \Rightarrow P(n)$
(inductive cage)
$P(n-1)$: inductive nypotmesis.
claim: $\quad \forall n \geqslant 0, \sum_{i=0}^{n} 2^{i}=2^{n+1}-1$
Proof
(1) we define $P(n)$ to mean treat

$$
\begin{aligned}
& \sum_{i=0}^{n} 2^{i}=2^{n+1}-1 \\
& P(n)= \begin{cases}T & \text { if } \sum_{n=0}^{n} 2^{i}=2^{n+1}-1 \\
F & \text { omeñise }\end{cases}
\end{aligned}
$$

we show by induction that $\forall n>10: P(n)$. we use induction over n.
(2) For the base case, we WTS P(0). i.e., WTS $\sum_{i=0}^{0} 2^{i}=2^{0+1}-1$

W's cheek: $2^{0}=1$ and $2^{\prime}-1=1$, so $P(0)$ holds.
(3) For the inductive case, we need to prove $\forall n \geqslant 1: P(n-1) \Rightarrow P(n)$.
Assume $P(n-1)$. (inductive hypothesis)

$$
\begin{equation*}
\sum_{-1}^{n-1} 2^{i}=2^{(n-1)+1}-1 \tag{*}
\end{equation*}
$$

WIS $P(n) . \sum_{i=0}^{n} 2^{i}=2^{n+1}-1$.

$$
\text { CHS }=\text { RUS }
$$

$$
\begin{aligned}
\text { LAS }=\sum_{i=0}^{n} 2^{i} & =\left[\begin{array}{l}
\left.\sum_{i=0}^{n-1} 2^{i}\right]+2^{n} \quad \begin{array}{l}
\text { deft. of } \\
\text { summations }
\end{array} \\
\\
\end{array} 2^{(n-1)+1}-1\right]+2^{n} \text { subs. } w / \\
& \left.=2^{n}-1+2^{n} \quad \text { (applying } \pm H\right) \\
& =2^{n} \cdot 2^{n}-1 \\
& =2^{n+1}-1 \\
& =\text { HS }
\end{aligned}
$$

So we have shown $p(n)$.
We 're shown $P(0)$ and $P(n-1) \Rightarrow P(n)$, so by the principle of mathematical'
induction, $P(n)$ holds $\forall n \geqslant 0$.
Bogus proof:

$$
\begin{gathered}
\sum_{i=0} 2^{i}=2^{n+1}-1 \\
\vdots \\
\text { claim: } \forall n \geqslant 0, \sum_{i=0}^{n} i=\frac{n(n+1)}{2} \\
0+1+2+\cdots n=\frac{n(n+1)}{2}
\end{gathered}
$$

ex $n 0+1+2+\cdots+n \quad \frac{n(n+1)}{2}$

$$
1 \quad 0+1=1 \quad \frac{1(2)}{2}=1
$$

$2 \quad 0+1+2=3 \quad \frac{2(3)}{2}=3$
$5 \quad 0+1+2+3+4+5=\frac{5(6)}{15}=\frac{30}{2}=15$
Proof We prove using mathematical
induction.
(1) We define the predicate $P(n)$ to be

$$
\sum_{i=0}^{n} i=\frac{n(n+1)}{2}
$$

we prove that $\forall n \geq 0: P(n)$ using mathematical induction over n.
(2) For the base case, consider $n=0$.

Then $\sum_{i=0} i=0$ and $\frac{n(n+1)}{2}=0$, so $P(0)$ holds.
(3) For the inductive case, we prove that $\forall n \geqslant 1, p(n-1) \Rightarrow p(n)$.
Assume $p(n-1)$. that is, $\sum_{i=0}^{n-1} i=\frac{(n-1)(n-1+1)}{2}$
wTS $P(n)$. That is, $\sum_{i=0}^{n} i=\frac{n(n+1)}{2}$.

$$
\begin{aligned}
\sum_{i=0}^{n} i & =\sum_{i=0}^{n-1} i+n \\
& =\frac{(n-1)(n-1+1)}{2}+n \quad \text { algebra/ of sum } \\
& =\frac{(n-1)(n)+n}{2} \quad \text { subs. } \\
& =\frac{n(n-1)}{2}+\frac{2 n}{2} \\
& =\frac{n(n-1)+2 n}{2} \\
& =\frac{n(n-1+2)}{2} \\
& =\frac{n(n+1)}{2}
\end{aligned}
$$

Write names of group of 3 or move t turn for bonus.

There is a typo in (3).
should be $P(n-1) \Rightarrow P(n)$

$$
\frac{\pi}{n o t} n-1
$$

HINTS once you get to (3), inductive step:

- start w/ LHS (2^{n}).
- try to manipulate so you get something from me inductive
note that $n \geqslant 4 \Rightarrow n^{2} \geqslant 4 n$,

$$
\text { so } n^{2}-4 n \geq 0
$$

