In CS, we're concerned w/ solving problems w/ a computer.
A problem for a computer must be defined precisely + unambiguously by its input and its desired output.
ex Sort an array
input: array t way to compare
output: sorted array
compute the factorial of a pos. int

$$
\begin{aligned}
& \text { input: } n \in \mathbb{Z}^{+} \\
& \text {output: } n \text { ! }
\end{aligned}
$$

Note that we need the tools of discrete matrito define these inputs + outputs precisely!
A solution is some method of taking in an arbitrary input and computing and out put ω / desired properties defined by the problem.
Typically this method is an algonthm, a sequence of steps you can perform to get from input to output.
in practice, we write an algorithm as a
mix of precise + unambiguous notation a mix of precise + unambiguous notation and
some words to give intuition. We call this mi some words to give intuition. We call this mix pseudocode.
ex fact (n) :

For amy algorith, you should ask yourself:

1. Does the alg work? Does it give the correct output for every valid input?
Proving 9 a focus of later classes...
But for some alger, we ran do this.
ex The recursive factorial alg is correct,
i.e., computes $n!\forall n \geqslant 1$. i.e., computes $n!\forall n \geqslant 1$.

Pf For pos. int. n, et $P(n)$ denote the property that fact $(n)=n$! we prove by mathematical induction on n.
base cage ($n=1$) fact (1) returns 1
inductive case: we $w T s \quad \forall n \geqslant 2: P(n-1)=7 P(n)$.
Assume $P(n-1)$. That is, fact $(n-1)$ returns $(n-1)$! WTS fact (n) returns n !

$$
\begin{aligned}
\operatorname{fact}(n) & =n \text { fact }(n-1) & & \text { by del. of } \\
& =n(n-1)! & & \text { by fact alg. } \\
& =n! & & \text { Let. of ! }
\end{aligned}
$$

2. Does the algoritum work efficiently?
ex for array sorting problems
sort (A):
let S = the set of all orderings of A's for x in s : if x is sorted then return x
Is this algoritum efficient? No if alts of A ave distinct, $|S|=\operatorname{longh}(A)$!
we focus on runtime.
How do we measure runtime?
idea $\# 1$: implement alg, run it, time it...

- depends on software, hardware, OS
- implementation takes time, error prone
- what input do we run it on?
idea $\# 2$: (1) find a function that expresses the alg's runtime as a function of input size
\rightarrow of primitive ops : arithmetic ops, logical lops, variable retriaval +
assignment assignment
(2) Use big 0 to represent the function, so we get a big-picturve idea + can compare to other balas
examples
for $i=1$ to $i=n$ do for $j=1$ to $j=n$ do

$$
\left.{ }^{r} \frac{j=1}{}=\sin =n+i, j\right]
$$

(1) Figure out how many doesuniter O(1)
primitive ops
(2) express in big $0: f(n)=n^{2}=O\left(n^{2}\right)$.
ex for $r=1$ to $r=n$ do

$$
\begin{aligned}
& r=1 \text { to } c=m d 0 \\
& p[r][c]=r+c] O(1)] \sum_{c=1}^{m} 1=m \int \sum_{==1}^{n} m
\end{aligned}
$$

(1) $f(n, m)=n m$

$$
=n m
$$

(2) $n m=O(n m)$
ex for $x=1$ to $x=n$ do
for $y=1$ to $y=n$ do foobar (Y) Olruntime of foobar)
(2) $O\left(n^{2}\right.$.runtime of foobar)
ex for $i=1$ to $i=n$ do

$$
\begin{aligned}
& r i=1 \text { to } i=n \text { do } \\
& \text { for } j=i \text { to } j=n d o \\
& \left.\operatorname{sum}=\operatorname{sum}+i \cdot j] 0(1)] \sum_{j=i}^{n} 1=n-i+1\right) \\
& =n^{2}-n(n+1)+n
\end{aligned}
$$

(1) $f(n)=n^{2}-\frac{n(n+1)+n}{} \quad \sum_{i=1}^{n}(n-i+1)$
(2) $f(n)=0\left(n^{2}\right)^{2}$
(2) $\begin{aligned} f(n)=0\left(n^{2}\right)^{2} & =\frac{n^{2}}{}-\frac{n(n+1)}{2}+n\end{aligned}$

$$
\begin{array}{r}
\sum_{i=1}^{n}(n-i+1)=\sum_{i=1}^{n} n-\sum_{i=1}^{n} i+\sum_{i=1}^{n} 1 \\
=n^{2}-\frac{n(n+1)}{2}+n \\
\prod_{\text {hard one... }}
\end{array}
$$

