$$
4.12
$$

Claim let n be any int. Then $n \cdot(n+1)^{2}$ is
terms: integer r
even \rightarrow div. by 2

$$
\rightarrow x / 2 \text { is an integer }
$$

ex

| n | $n(n+1)^{2}$ | is $n(n+1)^{2}$ even? |
| :---: | :---: | :---: | :---: |
| 0 | $0(1)=0$ | T |
| 3 | $3(3+1)^{2}=48$ | T |
| -2 | $-2(-2+1)^{2}=-2$ | T |

easy special cases:
n is even. n times anything is even.
wait! that covers evengtring.
Proof Consider two cases.
Case 1: n is even.
statement
reasoning
$n=2 c$ for int c by deft. of even
$n(n+1)^{2}=2 c(n+1)^{2}$ by subs.
$c(n+1)^{2}$ is an int. Sums, prods of int are
$n(n+1)^{2}$ is even we gave a way to int. K (it is $\left.C(n+1)^{2}\right)$
Case 2: n is odd.

Statement
$n+1$ is even
$n+1=2 c$ for int c

$$
\begin{aligned}
n(n+1)^{2} & =n(2 c)^{2} \\
& =2 n 2 c^{2}
\end{aligned}
$$

$n 2 c^{2}$ is int.
$n(n+1)^{2}$ is even by et of even
Since n is either even or odd, and in both $n(n+1)^{2}$ is even, $n(n+1)^{2}$ is even.

Proof by cases: if it is useful, split your Claim into cases.

- prove claim in each case
- ensure that the cases ave exhaustive (Cover all me possibilities)
(4.13)
claim let x be a real number. Then $-|x| \leq x \leq|x|$.
terms: absolute value $|x|=\left\{\begin{array}{cl}-x & \text { if } x<0 \\ x & \text { if } x \geqslant 0\end{array}\right.$
Proof we prove by cases.
Case 1: $x \geqslant 0$. See complete notes $1 / 23$.
Case 2: $x<0$. $フ$
Because x is either $\geqslant 0$ or $c 0$, we proved the claim.

