Relations
one CS application: relational databases

| student id | first name | last name |
| :---: | :---: | :---: |
| 123 | Bob | Smith |


| student id | passed course |  |
| :--- | :--- | :--- |
| 123 | csc 112 |  |
| 123 | $\operatorname{cscl}$ | 246 |

Questions about data stored in relational databases can be posed precisely using the language of relations.
SQL (structured avery language) is one language implementing this

Det $A$ binary relation $R$ on sets $A, B$ is a subset $R \geq A \times B$.
Recall: $A \times B=\{\langle a, b\rangle: a \in A, b \in B\}$
we write $(x, y) \in R$ as $x R y \leftarrow$

$$
(x, y) \notin R \text { as } x \notin y
$$

examples:
(1) "is (blood) related to" is a binary relation on people.
Let $P$ be the set of all people.
"is related to" is $\{\langle x, y\rangle: x \in P \wedge y \in P, x$ related to $y 3$
<Serena Williams, Venus williams) $\in R$, <lucy williams, venus williams $\notin R_{1}$
(2) $<$ on $A=\{1,2,3,4\}$

$$
\begin{aligned}
& <=\{\underbrace{\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle,\langle 2,3\rangle,\langle 2,4\rangle,\langle 3,4\rangle\}}_{\text {but } 3 \notin 2} \\
& 1<2
\end{aligned}
$$

(3) Let $f: A \rightarrow B$ be a function
$\begin{aligned}\{\langle a, f(a)\rangle: a \in A\} \subseteq & A \times B \text {, so it is a } \\ & \text { relation }\end{aligned}$
Q is the converse true?
$\{\langle x, y\rangle: x \in A, y \in B\}=\Rightarrow f: A \rightarrow B$ sit. $\quad \begin{aligned} & f(x)=y\end{aligned}$ $f(x)=y$ is a function?
(4) let $A=$ montins, $B=$ numbers of days $\{\langle\operatorname{Jan}, 31\rangle,\langle$ Feb, 28$\rangle,\langle$ Feb, 29$\rangle,\langle$ Mar, 31$\rangle$,
a relation indicating the $t$ days in a month.

| Jan 31 | Jan $\longrightarrow 31$ |  |
| :--- | :--- | :--- |
| Feb | 28 | Feb |
| Feb | 29 | 28 |
| Mar | 31 | Mar |

(5) $A=\{1,2,3,4\}$
${ }_{1} R_{5} 4$

$$
\begin{aligned}
& R_{5}=\{\langle 1,1\rangle,\langle 1,3\rangle,\langle 3,1\rangle,\langle 3,3\rangle,\langle 2,4\rangle,\langle 2,2\rangle, \\
& \langle 4,2\rangle,\langle 4,4\rangle\}
\end{aligned}
$$

(6) prereg chart

Properties of Relations
Let $R \subseteq A \times A$, so $R$ is a relation on $A$ let's represent $R$ as a graph:

$$
\left\lvert\, \begin{array}{r}
a_{a_{3}} \longrightarrow a_{2}^{2} \\
y_{a_{2}} \\
\left\langle a_{1}, a_{2}\right\rangle,\left\langle a_{2}, a_{2}\right\rangle, \\
\left.\left\langle a_{1}, a_{3}\right\rangle\right\}
\end{array}\right.
$$

$R$ is reflexive if $\forall a \in A: a R a$ all nodes have self-loops
$R$ is irveflexive if $\forall a \in A:$ a $\not \subset a$ no node has a self-100p
$Q$ are all relations on $A$ either reflexive or irreflexive?

$$
\begin{aligned}
\neg[\forall a \in A: a R a] & =\exists a \in A: \neg(a R a) \\
& =\exists a \in A: a \not \subset a
\end{aligned}
$$

$R$ is symmetric if

$$
\begin{aligned}
& \forall a_{1}, a_{2} \in A: a_{1} R a_{2}=7 a_{2} R a_{1} \\
& a_{1}, a_{3} \nless a_{4}
\end{aligned}
$$

whenever we have a forward edge, we also have a backward edge.
$R$ is auti-symmetric if

$$
\forall a_{1}, a_{2} \in A:\left(a_{1} R a_{2} \wedge a_{2} R a_{1}\right) \Rightarrow a_{1}=a_{2}
$$



$$
a_{a_{1}} \rightarrow a_{2}
$$

never have backwards edges, but self-loops
okay. okay.
$R$ is transitive if

$$
\forall a, b, c \in A:(a R b \wedge b R c)=)(a R c)
$$

$a \rightarrow b \rightarrow c$ shortcut edges always exist.
$Q$ is ar ar an transitive?

$$
\left(a_{1} R a_{2} \wedge a_{2} R a_{1}\right) \Rightarrow\left(a_{1} R a_{1}\right)
$$


ex relation $<$ on $\mathbb{Z} .1<2$

- reflexive: $\forall a \in \mathbb{Z}$ : aRa $a<a$ ? no - proof by counter example. I\&1
- irreflexive: $\forall a \in \mathbb{Z}$ : a \&a (a\&a) proof: Let $a \in \mathbb{Z} \cdot a \notin a, ~ 1$
- symmetric: $\forall a, b \in \mathbb{Z}: a<b \Rightarrow b<a$. disproof by counter example: $1<2$ but 24 . - antisymmetric:

