Intro to Graphs

$$
G=\langle V, E\rangle
$$

Def An undirected graph $G=(V, E)$ is a non-empty set of Vertices / nodes V and a set $I=\{\{u, v\}: u, v \in V\}$ of edges joining pairs of nodes.
\uparrow
ex
(4)

$$
\begin{aligned}
& V=\{A\} \\
& E=\varnothing
\end{aligned}
$$

$$
\begin{aligned}
& v=\{A, B\} \\
& E=\{\{A, B\}\}=\{\{B, A\}\}
\end{aligned}
$$ self-loops

$$
\{v\}=\{v, v\}
$$

(A) $-(B)$
(A) $-(B)$
(C)

$$
\begin{aligned}
& V=\{A, B, C, D\} \\
& E=\{\{A, B\},\{A, C\},\{B, C\}, \\
&
\end{aligned}
$$

non-ex
(A) all edges need 2 endpoints
real-world examples

- facebook friends
nodes: people
edge: 2 people are friends
- blood relations

Q what property would a relation need to have to be representable as an undirected graph?
ideas:
-irreflexive (no shf loops)
-symmetric $a \backsim b<a-b$
(A) (B) is this a valid graph?

$$
\begin{aligned}
& V=\{A, B\} \\
& E=\varnothing
\end{aligned}
$$

Deft A directed graph $G=(V, E)$ has a set of vertices and edges $E \subseteq V \times V=\{\langle u, v\rangle: u$, So that edges are directed from one vertex to another.
Q what else looks like $\subseteq V \times V$? relation!
ex (A)
(A) \rightarrow (B) $E=\{\langle A, B\rangle\}$

$$
\neq
$$

(A) \longleftarrow (B) $\quad E=\{\langle B, A\rangle\}$

- relations are directed graphs
- functions are also alrected graphs
real-worldexs
- twitter followers
- transportation networks

Det A graph is simple if it contains no parallel edges or self-loops.
parallel edges: note that $(A) B(B)$ has no parallel edges. self-loops:

Example 11.3: Self-loops and parallel edges.
Suppose that we construct a graph to model each of the following phenomena. In which settings do self-loops or parallel edges make sense?

1 A social network: nodes correspond to people; (undirected) edges represent friendships.
2 The web: nodes correspond to web pages; (directed) edges represent links.
3 The flight network for a commercial airline: nodes correspond to airports; (directed) edges denote
flights scheduled by the airline in the next month.
4 The email network at a college: nodes correspond to students; there is a (directed) edge $\langle u, v\rangle$ if u has sent at least one email to v within the last year.

social network	Self-loops	porallel edges
the webablyno	probably no	

flight network phreablyno
email network yes
Deft let $e=\{u, v\}$ or $\langle u, v\rangle$

- nodes u, v are adjacent or neighbors
- in a directed graph, v is an out-neigubor of u and u is du' in-neigmbor of v
- u and v are endpoints of e
- u and v are incident to e
(we also say tran e is incident to v, u)
let v be a node in an undirected graph.

$$
\operatorname{deg}(v)=4
$$

for a direefed graph, indeg $(v)=\#$ of in-neigubors of v
ex

A, B adjacent D, C not adjacent A, B are endpoints of $\langle A, B\rangle$
F is an in -neigubor of B
(A)? $?$ Let's come back to this

