warmup: label deg. of eaen node

6 edges, $\mid E I=6$

$$
\begin{aligned}
1+3+\frac{2+2+2+2}{}=4+8 & =12 \\
\sum_{v \in v} \operatorname{deg}(v)=12,2|E| & =2 \cdot 6 \\
& =12
\end{aligned}
$$

Theorem II. © "Handshaking Lemma"
Let $G=(V, E)$ be an undirected graph.
Then

$$
\sum_{V \in V} \operatorname{deg}(V)=2|E|
$$

Proof let $G=(V, E)$ be an undirected graph. Notice that every edge is connected to exactly 2 nodes, meaning that it contributes 1 to the deginee of 2 nodes. So $\sum_{V \in V} \operatorname{deg}(v)=2|E|$.

More formally, consider this psendocode.

Algorithm $1(G=(V, E))$:
$d u=0$ for all $v \in V$
for each edge $\{u, v\}$ in E :

$$
\begin{aligned}
& d u=d u+1 \\
& d v=d v+1
\end{aligned}
$$

1. Is the algorithm correct?
2. What is $\sum_{v \in V} d_{v}$ alter iteration i ?

$$
\sum_{V \in V} d_{V}=2 i
$$

Because the loop runs IE I times,

$$
\sum_{v \in V} d_{v}=2|E|
$$

fact prat follows simply from a previous theorenn/Lemma
Corollary
let n odd denote the number of nodes unose degree is odd. Then node is even.

Proof Aiming for a contradiction, suppose that nod is odd.

But this contradicts that

$$
S=P(\{(0,1,2,3\})
$$

$$
\{0,1,2\}
$$

$\{1\}$

$$
R_{1}=\{\langle\phi,\{13\rangle,\langle \rangle
$$

