(pronounced "keek")
Deft A complete graph or clique is an undirected graph $G=(V, E)$ s.t.

$$
\forall u, v \in v \quad u \neq v \Rightarrow\{u, v\} \in E
$$

The clique on n nodes is denoted $k n$.
ex $k_{1} \quad \dot{i} 0 \quad k_{2} \quad \ldots$ l
k_{3}

Eu

Q What is the relationship bowen $n=|V|$ and $m=|E|$ for k_{n} ?
A \# of ways to choose 2 nodes out
sum of natural \#s less tran n

$$
\frac{n(n-1)}{2}
$$

Claim k_{n} has $\frac{n(n-1)}{2}$ edges.
Proof \#1 We give a way to count the edges and show that it gives $\frac{n(n-1)}{2}$.
label the nodes $v_{1}, v_{2}, \ldots, v_{n}$. Starting w / v_{1} ' count the uncounted ages and add to the total.
v_{1} has $n-1$ uncounted edges
V_{2} has $n-2$ uncounted edges
V_{n-1} has 1 uncounted edge
v_{n} has 0 uncounted edges

$$
|E|=(n-1)+(n-2)+\cdots\left(+0=\frac{n(n-1)}{2}\right.
$$

Proof \#2 in kn every node has deg. $n-1$. So,

$$
\sum_{v \in V} \operatorname{deg}(v)=\sum_{v \in V}(n-1)=n(n-1)
$$

But by the handshaking Lemma,

$$
\begin{aligned}
\sum_{v \in V} \operatorname{deg}(v) & =2|E| \\
n(n-1) & =2|E|
\end{aligned}
$$

$$
\left.\frac{n(n-1)}{2}=1 E\right)=m
$$

Proof \#3 let $P(n)$ denote that K_{n} has $\frac{n(n-1)}{2}$ edges. We prove $\forall n \geqslant 1: P(n)$
Base Lase: $n=1$.
k_{1} - has o edges.

$$
\frac{1(1-1)}{2}=0 \text { so } P(1) \text { holds. }
$$

Inductive cage: we wTS $\forall n \geqslant 2: P(n-1) \Rightarrow P(n)$ Assume $P(n-1)$. That is, assume k_{n-1} has $\frac{(n-1)(n-2)}{2}$ edges.
Now, consider an arbitrang clique ψ_{n}. Let kn' $^{\prime}$ be the graph created by removing one node and all its incident edges from k_{n}. (example:
 $\mathrm{K}_{5}{ }^{\prime}$

Note that $F_{n}{ }^{\prime}=F_{n-1}$

Goal: \#edges $k_{n}=\frac{n(n-1)}{2}$

$$
\begin{aligned}
\text { Hedges of } \mathrm{Kn}_{n} & =\begin{array}{c}
\# \text { of edges of } \\
\text { kn-1 }
\end{array}+\begin{array}{c}
\text { of edges } \\
\text { have to } \\
\text { add to } \\
\text { kn-1 to get } \\
k n
\end{array} \\
& I H \\
& =\frac{(n-1)(n-2)}{2} \quad(n-1) \\
& =\frac{n^{2}-3 n+2}{2}+\frac{2(n-1)}{2} \\
& =\frac{n^{2}-3 n+2+2 n-2}{2} \\
& =\frac{n^{2}-n}{2} \\
& =\frac{n^{n(n-1)}}{2}
\end{aligned}
$$

Def A bipartite graph $G=(L \cup R, E)$ st. $L \cap R=\varnothing(L, R$ disjoint) and $E \leq\{\{l, r\}$:
ex

$$
\begin{aligned}
& L=\{A, E\} \\
& R=\{B, C D\}
\end{aligned}
$$

Claim If G contains a $\Delta\left(k_{3}\right)$, then it is not bipartite.
Proof timing for a contradiction, suppose that G contains a \triangle and it is bipartite.
let v_{1}, v_{2}, v_{3} be the nodes of the Δ. (example:

\rightarrow because we $v_{1}, v 2, v_{3}$
Wimout loss of generality, suppose $v_{1} \in L$ and $v_{2} \in R$. Since $v_{2} \in R, v_{3} \in L$. $B v_{2}$ there is an edge from v_{1} to v_{3} and both are in R, which con tradicts tran G is bipartite.

Q other dir?
If a graph is bipartite, then it has a Δ.

Disproof by counter example:
Det A graph is planar if we can draw it in the plane w lout edge crossings.

note: 2 graph are equal if vert same, edges same

K_{n} is planar
k_{5} is not

L

$$
R
$$

complete bipartite graph
on 3 nodes

$$
k_{3,3}
$$

