Det A path in $G=\left(V_{1} E\right)$ is a sequence of nodes $\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ s.t.

$$
\begin{aligned}
& -\forall i \in\{1,2, \ldots, k\}: u_{i} \in V \\
& -\forall i \in\{1,2, \ldots, k-1\}:\left\langle u_{i}, u_{i+1}\right\rangle \\
& u_{1} \rightarrow u_{2} \rightarrow u_{3} \rightarrow \cdots u_{k-1} \rightarrow u_{k}
\end{aligned}
$$

Q does this definition allow repeated nodes in a path?

$$
a \rightarrow \underset{c}{b \rightarrow c \rightarrow d}
$$

$$
u_{1}=a
$$

$$
u_{2}=b
$$

$$
u_{3}=c
$$

$$
u_{4}=b
$$

$$
45=c
$$

let $u \subseteq V$

$$
u_{6}=d
$$

ex $\{a, b, c, d\}$
$\{1,2,3,4,5,6\}$
A path is simple if all its nodes are unique.
The length of a path is $\#$ edges $(k-1)$. we say a path traverses its edges.
The shortest path from node u to node v is the path of min. Length.
The distance dist $(u, v) d(u, v)$ between u, v is the length of the shortest path.
A graph is connected if $\forall u, v \in V \exists$ path
from u to v.
ex

not connected: $z^{l} z$ to x

Deft A cycle $\left(u_{1}, u_{2}, \ldots, u_{k}, u_{1}\right)$ is a path of length $\geqslant 2$ from u_{1} to u_{2} that does not traverse the same edge twice.

A cycle is simple if its nodes are distinct. A graph is acyclic if it contains no cycles.
ex o-o-o-o acyclic
 acyclic
 not acydic
 acyclic
$a \rightarrow b \rightarrow c \quad$ acyclic

$a \rightarrow b \rightarrow d \quad$ not acyclic

Q How many cycles does have?
13
?

$$
\begin{aligned}
& 3 \text { we consider }\langle a, b, c\rangle, \\
& \qquad \begin{aligned}
&\langle b, c, a\rangle, \\
&\langle c, a, b\rangle \text { equal }
\end{aligned}
\end{aligned}
$$

Lemma 11.33 if $G=(V, E)$ is an undirected acyclic graph, then $\exists v \in V$ st. $\operatorname{deg}(v)=0$ or $\operatorname{deg}(v)=1$.

Pf We give a proof by construction via an algorithm that, given an acyclic graph, finds a degree of degree I node.
alg:
LeA u_{0} be any node in G
Let $i=0$
while current node u_{i} has unvisited
let $u_{i+1}=$ such a neighbor neighbors:

Given an acyclic graph G, let t be the node returned by tue alg'
WTS either $\operatorname{deg}(t)=0$ or $\operatorname{deg}(t)=1$.
Case 1: $t=u_{0} \quad \dot{u}_{0}$ then $\operatorname{deg}(t)=0$.
Case $2: t=u_{k}, k \geqslant 1$. We will show $\operatorname{deg}(t)=1$.
Since t is last in sequence $\left\langle u_{0}, u_{1}, \ldots, u_{k}\right\rangle$
There is ho edge from t to any Unvisited node. If \exists edge from t to any node other than u_{k-1}, it is in $\left\{u_{0}, u_{1}, \ldots, u_{k-2}\right\}$.

So t has only one edge back to u_{k-1}. $\operatorname{deg}(t)=1$.

