Tree Diagrams in Probability

- intemal nodes = random choice -label w/ probability

$$
\begin{aligned}
& \text { flip } \xrightarrow[T]{H / 2} \quad \text { sum of probabilities }=1 \\
& \text { coin } \xrightarrow[T]{1 / 2}
\end{aligned}
$$

- Leaves are outcomes

ex flip 1 fair win. If H, flip and fair coin. If T_{1} flip a coin $w / 0.75$ probability of T 0.25 probability of H.

$$
\begin{aligned}
& -\operatorname{Pr}[\langle T, T\rangle]=\frac{3}{8} \\
& -\operatorname{Pr}[\text { at least one } H]=\operatorname{Pr}[\overline{\langle T, T\rangle}] \\
& \\
& 1-\frac{3}{8}=\frac{1}{4}+\frac{1}{4}+\frac{1}{8}
\end{aligned}
$$

fair win

$$
\text { (unfair) } T^{3 / 4} \text { IT } \frac{3}{8}
$$

ex monty Hall problem

should you switch doors? Yes.

- If you switch, nat is your probability of
winning?

let $S=$ set of all outcomes car at A, you pick
B revealed

$$
\epsilon S
$$

Let $A \subseteq S$ be all outcomes unere you win by switching.
$\operatorname{Pr}[A]=\operatorname{probability}$ of win ring unen you switun

$$
=b \cdot \frac{1}{9}=\frac{6}{a}=\frac{2}{3}
$$

$$
\operatorname{Pr}[\bar{A}]=1-\frac{2}{3}=\frac{1}{3}=6\left(\frac{1}{18}\right)=\frac{1}{3}
$$

Deft A permutation of a set S is IS) sequence of elements of S with no repetitions.
ex $S=\{1,2,3,4\}$

$$
\begin{aligned}
& \langle\downarrow, \downarrow, 3,4\rangle{ }^{v} \\
& \langle 2,3,4,1\rangle v \\
& \langle 2,3,4, \\
& \langle 2,2,4,1\rangle x \\
& \langle 3,2,1\rangle x
\end{aligned}
$$

The 9.8 let S be a set $w||S|=n$. The number of permutations is n !
Proof $\# \mid$ by product rule. $|A \times B|=|A| \cdot|B|$
let S_{1} be S-first choice, $S_{2}=S_{1}$ - and choice all the way to S_{n-1}

$$
\begin{aligned}
\left|S \times S_{1} \times S_{2} \times \cdots \times S_{n-1}\right| & =|S| \cdot\left|S_{1}\right| \cdot\left|S_{2}\right| \cdots\left|S_{n-1}\right| \\
& =n(n-1)(n-2) \cdots(1) \\
& =n!
\end{aligned}
$$

Proof \#2 w/ a tree diagram

$$
\text { choose } \left.\frac{b}{a} \begin{array}{c}
\text { choose } \\
S-a
\end{array}\right\}
$$

choose
from's
$n!$ leaves

Pet let n, k be non-negative ints $k \leq n$.

$$
\begin{array}{lr}
\binom{n}{k}=\frac{n!}{k!(n-k)!} & \{1,1,2\} \\
\uparrow & \{1,2\} \\
\text { "nchoosek" } &
\end{array}
$$

the number of ways to choose k elements from a size u set if order doesn't matter

Choosing k items from n
Let $S=\{1,2,3,4,5\} \quad k=3$
how do I select k items from S ?

order matters	repetition allowed k	rep. not allowed $n!$ order doesn't matter $\binom{n+k-1}{k}$
$\binom{n}{k}$		

