So far:
wheres something occus
Now: how many?
\& how many times do we have to, flip a win to get 100 heads?
In a randomly sorted array, for
now many slots is $A[i]<A[i+1]$
det A random variable X assigns a numerical value to even g outcome of a sample space s.

$$
X: S \rightarrow \mathbb{R}
$$

ex Suppose we flip a coin 3 times

$$
\begin{aligned}
& S=\{H, T\}^{\}}=\{\langle H, H, H\rangle,\langle H, T, H\rangle, \cdots\} \\
& \operatorname{Pr}[S]=\frac{1}{8} \forall S \in S
\end{aligned}
$$

Let $X=$ Heads
$y=\#$ of consecutive T (from start)

$$
\begin{array}{ll}
X(T T T)=0 & X(T H H)=2 \\
Y(T T T)=3 & Y(T H H)=1
\end{array}
$$

ex let S be the set of all English words Let L = letters of a word
$L($ computer $)=0$
Def The expectation of a random variable X denoted $E[X]$, is the average value of X.

$$
\begin{aligned}
E[X] & =\sum_{s \in S} X(s) \cdot \operatorname{Pr}[s] \\
& =\sum_{\substack{ \\
\\
\\
\\
\\
X(s)=y: \\
\\
X(s)=y}} y \cdot \operatorname{Pr}[X=y]
\end{aligned}
$$

ex Counting heads in 3 coin flips

$$
\begin{aligned}
& X= \# \text { heads } \\
& \text { expected H heads }=E[X]=\sum_{X \in S} X(X) \cdot \operatorname{Pr}[X] \\
&= X(H H H) \cdot \operatorname{Pr}[H H H]+X(H H T) \operatorname{Pr}[H H T] \cdots \\
&= \frac{1}{8}(X(H H H)+X(H H T)+X(H T H)+X(H T T) \\
&+X(T H H)+X(T H T)+X(T T H)+X(T T T)) \\
&= \frac{1}{8}(3+2+2+1+2+1+1+0) \\
&=\frac{1}{63}(12)=1.5
\end{aligned}
$$

$$
\begin{aligned}
E[X]= & \sum_{y \in\{0,1,2,3\}} y \cdot \operatorname{Pr}[x(x)=y] \\
= & 0 \cdot \operatorname{Pr}[0 \text { heads }]+1 \cdot \operatorname{Pr}[1 \text { head }]+ \\
& 2 \cdot \operatorname{Pr}[2 \text { heads }]+3 \cdot \operatorname{Pr}[3 \text { heads }] \\
= & 0 \cdot \frac{1}{8}+1\left(\frac{3}{8}\right)+2\left(\frac{3}{8}\right)+3\left(\frac{1}{8}\right) \\
= & \frac{12}{8}
\end{aligned}
$$

Thu Lineanty of Expectation
let S be a sample space and $X: S \rightarrow \mathbb{R}$, $Y: S \rightarrow \mathbb{R}$ be any the random variables. Then $E[X+Y]=E[X]+E[Y]$

